BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30763621)

  • 1. Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives.
    Sharifi M; Hosseinali SH; Saboury AA; Szegezdi E; Falahati M
    J Control Release; 2019 Apr; 299():121-137. PubMed ID: 30763621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting non-apoptotic cell death in cancer treatment by nanomaterials: Recent advances and future outlook.
    Sepand MR; Ranjbar S; Kempson IM; Akbariani M; Muganda WCA; Müller M; Ghahremani MH; Raoufi M
    Nanomedicine; 2020 Oct; 29():102243. PubMed ID: 32623018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing regulated cell death modalities as an efficient tool for
    Tkachenko A; Onishchenko A; Myasoedov V; Yefimova S; Havranek O
    Nanotoxicology; 2023 Apr; 17(3):218-248. PubMed ID: 37083543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials.
    Andón FT; Fadeel B
    Acc Chem Res; 2013 Mar; 46(3):733-42. PubMed ID: 22720979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pro-Death or Pro-Survival: Contrasting Paradigms on Nanomaterial-Induced Autophagy and Exploitations for Cancer Therapy.
    Zhang Y; Zhang L; Gao J; Wen L
    Acc Chem Res; 2019 Nov; 52(11):3164-3176. PubMed ID: 31621285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral nanomaterials for tumor therapy: autophagy, apoptosis, and photothermal ablation.
    Peng Z; Yuan L; XuHong J; Tian H; Zhang Y; Deng J; Qi X
    J Nanobiotechnology; 2021 Jul; 19(1):220. PubMed ID: 34294083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Search of a Converging Cellular Mechanism in Nanotoxicology and Nanomedicine in the Treatment of Cancer.
    Gulumian M; Andraos C
    Toxicol Pathol; 2018 Jan; 46(1):4-13. PubMed ID: 29034767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional nanomaterials for phototherapies of cancer.
    Cheng L; Wang C; Feng L; Yang K; Liu Z
    Chem Rev; 2014 Nov; 114(21):10869-939. PubMed ID: 25260098
    [No Abstract]   [Full Text] [Related]  

  • 9. Targeting regulated cell death (RCD) with small-molecule compounds in cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death and necroptosis.
    Liu W; Jin W; Zhu S; Chen Y; Liu B
    Drug Discov Today; 2022 Feb; 27(2):612-625. PubMed ID: 34718209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting regulated cell death with plant natural compounds for cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death, and necroptosis.
    Yang Y; Chen Y; Wu JH; Ren Y; Liu B; Zhang Y; Yu H
    Phytother Res; 2023 Apr; 37(4):1488-1525. PubMed ID: 36717200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial nanomedicine.
    Yacoby I; Benhar I
    Nanomedicine (Lond); 2008 Jun; 3(3):329-41. PubMed ID: 18510428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death.
    Li J; Yi X; Liu L; Wang X; Ai J
    Apoptosis; 2023 Aug; 28(7-8):1198-1215. PubMed ID: 37184582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Membrane Bioconjugation and Membrane-Derived Nanomaterials for Immunotherapy.
    Li PY; Fan Z; Cheng H
    Bioconjug Chem; 2018 Mar; 29(3):624-634. PubMed ID: 29323870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted nanomaterials for radiotherapy.
    Escorcia FE; McDevitt MR; Villa CH; Scheinberg DA
    Nanomedicine (Lond); 2007 Dec; 2(6):805-15. PubMed ID: 18095847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring.
    Namiki Y; Fuchigami T; Tada N; Kawamura R; Matsunuma S; Kitamoto Y; Nakagawa M
    Acc Chem Res; 2011 Oct; 44(10):1080-93. PubMed ID: 21786832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Nanomaterials Development for Nanomedicine and Cancer.
    Abbasi Kajani A; Haghjooy Javanmard S; Asadnia M; Razmjou A
    ACS Appl Bio Mater; 2021 Aug; 4(8):5908-5925. PubMed ID: 35006909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody-guided nanomedicines as novel breakthrough therapeutic, diagnostic and theranostic tools.
    Farahavar G; Abolmaali SS; Gholijani N; Nejatollahi F
    Biomater Sci; 2019 Oct; 7(10):4000-4016. PubMed ID: 31355391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis.
    Philipp S; Sosna J; Plenge J; Kalthoff H; Adam D
    Cell Commun Signal; 2015 Apr; 13():25. PubMed ID: 25925126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies.
    Pierini F; Nakielski P; Urbanek O; Pawłowska S; Lanzi M; De Sio L; Kowalewski TA
    Biomacromolecules; 2018 Nov; 19(11):4147-4167. PubMed ID: 30230317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opportunities and challenges of carbon-based nanomaterials for cancer therapy.
    Bianco A; Kostarelos K; Prato M
    Expert Opin Drug Deliv; 2008 Mar; 5(3):331-42. PubMed ID: 18318654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.