BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30763678)

  • 1. Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons.
    Key J; Mueller AK; Gispert S; Matschke L; Wittig I; Corti O; Münch C; Decher N; Auburger G
    Neurobiol Dis; 2019 Jul; 127():114-130. PubMed ID: 30763678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parkin maintains mitochondrial levels of the protective Parkinson's disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10.
    Bertolin G; Jacoupy M; Traver S; Ferrando-Miguel R; Saint Georges T; Grenier K; Ardila-Osorio H; Muriel MP; Takahashi H; Lees AJ; Gautier C; Guedin D; Coge F; Fon EA; Brice A; Corti O
    Cell Death Differ; 2015 Oct; 22(10):1563-76. PubMed ID: 25591737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hippocalcin and KCNQ channels contribute to the kinetics of the slow afterhyperpolarization.
    Kim KS; Kobayashi M; Takamatsu K; Tzingounis AV
    Biophys J; 2012 Dec; 103(12):2446-54. PubMed ID: 23260046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations.
    Gautier CA; Erpapazoglou Z; Mouton-Liger F; Muriel MP; Cormier F; Bigou S; Duffaure S; Girard M; Foret B; Iannielli A; Broccoli V; Dalle C; Bohl D; Michel PP; Corvol JC; Brice A; Corti O
    Hum Mol Genet; 2016 Jul; 25(14):2972-2984. PubMed ID: 27206984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy.
    Sun Y; Vashisht AA; Tchieu J; Wohlschlegel JA; Dreier L
    J Biol Chem; 2012 Nov; 287(48):40652-60. PubMed ID: 23060438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ubiquitin E3 ligase Parkin regulates neuronal Ca
    Grimaldo L; Sandoval A; Duran P; Gómez Flores-Ramos L; Felix R
    J Neurophysiol; 2022 Dec; 128(6):1555-1564. PubMed ID: 36350063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress.
    Pickrell AM; Huang CH; Kennedy SR; Ordureau A; Sideris DP; Hoekstra JG; Harper JW; Youle RJ
    Neuron; 2015 Jul; 87(2):371-81. PubMed ID: 26182419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice.
    Noda S; Sato S; Fukuda T; Tada N; Uchiyama Y; Tanaka K; Hattori N
    Neurobiol Dis; 2020 Mar; 136():104717. PubMed ID: 31846738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pael-R transgenic mice crossed with parkin deficient mice displayed progressive and selective catecholaminergic neuronal loss.
    Wang HQ; Imai Y; Inoue H; Kataoka A; Iita S; Nukina N; Takahashi R
    J Neurochem; 2008 Oct; 107(1):171-85. PubMed ID: 18691389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism.
    Okarmus J; Havelund JF; Ryding M; Schmidt SI; Bogetofte H; Heon-Roberts R; Wade-Martins R; Cowley SA; Ryan BJ; Færgeman NJ; Hyttel P; Meyer M
    Stem Cell Reports; 2021 Jun; 16(6):1510-1526. PubMed ID: 34048689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.
    Pinto M; Nissanka N; Moraes CT
    J Neurosci; 2018 Jan; 38(4):1042-1053. PubMed ID: 29222404
    [No Abstract]   [Full Text] [Related]  

  • 13. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease.
    Shiba-Fukushima K; Ishikawa KI; Inoshita T; Izawa N; Takanashi M; Sato S; Onodera O; Akamatsu W; Okano H; Imai Y; Hattori N
    Hum Mol Genet; 2017 Aug; 26(16):3172-3185. PubMed ID: 28541509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parkin promotes proteasomal degradation of synaptotagmin IV by accelerating polyubiquitination.
    Kabayama H; Tokushige N; Takeuchi M; Kabayama M; Fukuda M; Mikoshiba K
    Mol Cell Neurosci; 2017 Apr; 80():89-99. PubMed ID: 28254618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial and autophagic alterations in skin fibroblasts from Parkinson disease patients with Parkin mutations.
    González-Casacuberta I; Juárez-Flores DL; Ezquerra M; Fucho R; Catalán-García M; Guitart-Mampel M; Tobías E; García-Ruiz C; Fernández-Checa JC; Tolosa E; Martí MJ; Grau JM; Fernández-Santiago R; Cardellach F; Morén C; Garrabou G
    Aging (Albany NY); 2019 Jun; 11(11):3750-3767. PubMed ID: 31180333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocalcin gates the calcium activation of the slow afterhyperpolarization in hippocampal pyramidal cells.
    Tzingounis AV; Kobayashi M; Takamatsu K; Nicoll RA
    Neuron; 2007 Feb; 53(4):487-93. PubMed ID: 17296551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal Preconditioning Requires the Mitophagic Activity of C-terminus of HSC70-Interacting Protein.
    Lizama BN; Palubinsky AM; Raveendran VA; Moore AM; Federspiel JD; Codreanu SG; Liebler DC; McLaughlin B
    J Neurosci; 2018 Aug; 38(31):6825-6840. PubMed ID: 29934347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila.
    Zanon A; Kalvakuri S; Rakovic A; Foco L; Guida M; Schwienbacher C; Serafin A; Rudolph F; Trilck M; Grünewald A; Stanslowsky N; Wegner F; Giorgio V; Lavdas AA; Bodmer R; Pramstaller PP; Klein C; Hicks AA; Pichler I; Seibler P
    Hum Mol Genet; 2017 Jul; 26(13):2412-2425. PubMed ID: 28379402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MPTP and DSP-4 susceptibility of substantia nigra and locus coeruleus catecholaminergic neurons in mice is independent of parkin activity.
    Thomas B; von Coelln R; Mandir AS; Trinkaus DB; Farah MH; Leong Lim K; Calingasan NY; Flint Beal M; Dawson VL; Dawson TM
    Neurobiol Dis; 2007 May; 26(2):312-22. PubMed ID: 17336077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo.
    Sung H; Tandarich LC; Nguyen K; Hollenbeck PJ
    J Neurosci; 2016 Jul; 36(28):7375-91. PubMed ID: 27413149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.