BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30763682)

  • 1. Non-aqueous formulations for ram and screen extrusion-spheronisation.
    Zhang M; Rough SL; Ward R; Seiler C; Wilson DI
    Int J Pharm; 2019 Apr; 560():394-405. PubMed ID: 30763682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of screen and ram extrusion-spheronisation of simple pharmaceutical pastes based on microcrystalline cellulose.
    Zhang M; Wilson DI; Ward R; Seiler C; Rough SL
    Int J Pharm; 2013 Nov; 456(2):489-98. PubMed ID: 23999221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrusion-spheronisation of microcrystalline cellulose pastes using a non-aqueous liquid binder.
    Mascia S; Seiler C; Fitzpatrick S; Wilson DI
    Int J Pharm; 2010 Apr; 389(1-2):1-9. PubMed ID: 20123008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of starch-based pellets via extrusion/spheronisation.
    Dukić A; Mens R; Adriaensens P; Foreman P; Gelan J; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2007 Apr; 66(1):83-94. PubMed ID: 17045467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immediate release pellets with lipid binders obtained by solvent-free cold extrusion.
    Krause J; Thommes M; Breitkreutz J
    Eur J Pharm Biopharm; 2009 Jan; 71(1):138-44. PubMed ID: 18805483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel lab-scale screen extruder for studying extrusion-spheronisation.
    Zhang M; Mascia S; Rough SL; Ward R; Seiler C; Wilson DI
    Int J Pharm; 2013 Oct; 455(1-2):285-97. PubMed ID: 23871735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of mixing on the extrusion-spheronisation of a micro-crystalline cellulose paste.
    Bryan MP; Kent MD; Rickenbach J; Rimmer G; Wilson DI; Rough SL
    Int J Pharm; 2015 Feb; 479(1):1-10. PubMed ID: 25528365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of pellets via extrusion-spheronisation without the incorporation of microcrystalline cellulose: a critical review.
    Dukić-Ott A; Thommes M; Remon JP; Kleinebudde P; Vervaet C
    Eur J Pharm Biopharm; 2009 Jan; 71(1):38-46. PubMed ID: 18771727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of mass transfer during spheronisation.
    Koester M; Thommes M
    AAPS PharmSciTech; 2012 Jun; 13(2):493-7. PubMed ID: 22415640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extrusion-spheronisation of highly loaded 5-ASA multiparticulate dosage forms.
    Di Pretoro G; Zema L; Gazzaniga A; Rough SL; Wilson DI
    Int J Pharm; 2010 Dec; 402(1-2):153-64. PubMed ID: 20934502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimisation and scale-up of a highly-loaded 5-ASA multi-particulate dosage form using a factorial approach.
    Di Pretoro G; Zema L; Palugan L; Wilson DI; Rough SL; Gazzaniga A
    Eur J Pharm Sci; 2012 Jan; 45(1-2):158-68. PubMed ID: 22108344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of thermal binders on chemical stabilities and tabletability of gabapentin granules prepared by twin-screw melt granulation.
    Kittikunakorn N; Koleng JJ; Listro T; Calvin Sun C; Zhang F
    Int J Pharm; 2019 Mar; 559():37-47. PubMed ID: 30660749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evaluation of fine-particle hydroxypropylcellulose as a roller compaction binder in pharmaceutical applications.
    Skinner GW; Harcum WW; Barnum PE; Guo JH
    Drug Dev Ind Pharm; 1999 Oct; 25(10):1121-8. PubMed ID: 10529893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and characterization of pellets using Avicel CL611 as spheronization aid.
    Puah SY; Yap HN; Chaw CS
    Drug Dev Ind Pharm; 2014 Mar; 40(3):418-24. PubMed ID: 23480532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of kappa-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. II. Influence of drug and filler type.
    Thommes M; Kleinebudde P
    Eur J Pharm Biopharm; 2006 May; 63(1):68-75. PubMed ID: 16325384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manufacture of fine spherical granules by an extrusion/spheronization method.
    Kanbe H; Hayashi T; Onuki Y; Sonobe T
    Int J Pharm; 2007 Jun; 337(1-2):56-62. PubMed ID: 17257789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of partially hydrolysed polyvinyl alcohol for the production of high drug-loaded sustained release pellets via extrusion-spheronisation and coating: In vitro and in vivo evaluation.
    Verstraete G; De Jaeghere W; Vercruysse J; Grymonpré W; Vanhoorne V; Stauffer F; De Beer T; Bezuijen A; Remon JP; Vervaet C
    Int J Pharm; 2017 Jan; 517(1-2):88-95. PubMed ID: 27919698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evaluation of modified microcrystalline cellulose for the preparation of pellets with high drug loading by extrusion/spheronization.
    Podczeck F; Knight PE; Newton JM
    Int J Pharm; 2008 Feb; 350(1-2):145-54. PubMed ID: 17905548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of ram extrusion by single-holed and multi-holed dies for extrusion-spheronisation of microcrystalline-based pastes.
    Zhang M; Rough SL; Ward R; Seiler C; Wilson DI
    Int J Pharm; 2011 Sep; 416(1):210-22. PubMed ID: 21742021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of kappa-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. I. Influence of type and fraction of filler.
    Thommes M; Kleinebudde P
    Eur J Pharm Biopharm; 2006 May; 63(1):59-67. PubMed ID: 16326085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.