These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 30763925)

  • 1. Dynamical screening in monolayer transition-metal dichalcogenides and its manifestations in the exciton spectrum.
    Scharf B; Van Tuan D; Žutić I; Dery H
    J Phys Condens Matter; 2019 May; 31(20):203001. PubMed ID: 30763925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS
    Cunningham PD; Hanbicki AT; McCreary KM; Jonker BT
    ACS Nano; 2017 Dec; 11(12):12601-12608. PubMed ID: 29227085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Proximity Effects in Transition-Metal Dichalcogenides: Converting Excitons.
    Scharf B; Xu G; Matos-Abiague A; Žutić I
    Phys Rev Lett; 2017 Sep; 119(12):127403. PubMed ID: 29341642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impurity-Induced Emission in Re-Doped WS
    Loh L; Chen Y; Wang J; Yin X; Tang CS; Zhang Q; Watanabe K; Taniguchi T; Wee AT; Bosman M; Quek SY; Eda G
    Nano Lett; 2021 Jun; 21(12):5293-5300. PubMed ID: 34115939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional excitons in monolayer transition metal dichalcogenides from radial equation and variational calculations.
    Zhang JZ; Ma JZ
    J Phys Condens Matter; 2019 Mar; 31(10):105702. PubMed ID: 30664498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical fingerprint of non-covalently functionalized transition metal dichalcogenides.
    Feierabend M; Malic E; Knorr A; Berghäuser G
    J Phys Condens Matter; 2017 Sep; 29(38):384003. PubMed ID: 28691918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor.
    Ugeda MM; Bradley AJ; Shi SF; da Jornada FH; Zhang Y; Qiu DY; Ruan W; Mo SK; Hussain Z; Shen ZX; Wang F; Louie SG; Crommie MF
    Nat Mater; 2014 Dec; 13(12):1091-5. PubMed ID: 25173579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of New Excitons in Transition Metal Dichalcogenide-Perovskite Oxide System.
    Yin X; Yang M; Tang CS; Wang Q; Xu L; Wu J; Trevisanutto PE; Zeng S; Chin XY; Asmara TC; Feng YP; Ariando A; Chhowalla M; Wang SJ; Zhang W; Rusydi A; Wee ATS
    Adv Sci (Weinh); 2019 Jun; 6(12):1900446. PubMed ID: 31380174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton Manifolds in Highly Ambipolar Doped WS
    Tiede DO; Saigal N; Ostovar H; Döring V; Lambers H; Wurstbauer U
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton Band Structure in Two-Dimensional Materials.
    Cudazzo P; Sponza L; Giorgetti C; Reining L; Sottile F; Gatti M
    Phys Rev Lett; 2016 Feb; 116(6):066803. PubMed ID: 26919006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical Excitonic Effects in Doped Two-Dimensional Semiconductors.
    Gao S; Liang Y; Spataru CD; Yang L
    Nano Lett; 2016 Sep; 16(9):5568-73. PubMed ID: 27479740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study on the electronic and optical properties of AlSb monolayer.
    Mohebpour MA; Tagani MB
    Sci Rep; 2023 Jun; 13(1):9925. PubMed ID: 37337049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative electronic compressibility and tunable spin splitting in WSe2.
    Riley JM; Meevasana W; Bawden L; Asakawa M; Takayama T; Eknapakul T; Kim TK; Hoesch M; Mo SK; Takagi H; Sasagawa T; Bahramy MS; King PD
    Nat Nanotechnol; 2015 Dec; 10(12):1043-7. PubMed ID: 26389661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton Relaxation Cascade in two-dimensional Transition Metal Dichalcogenides.
    Brem S; Selig M; Berghaeuser G; Malic E
    Sci Rep; 2018 May; 8(1):8238. PubMed ID: 29844321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renormalization of optical excitations in molecules near a metal surface.
    Garcia-Lastra JM; Thygesen KS
    Phys Rev Lett; 2011 May; 106(18):187402. PubMed ID: 21635125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically controlled single-valley exciton doublet states with tunable internal spin structures and spin magnetization generation.
    Ruan J; Li Z; Ong CS; Louie SG
    Proc Natl Acad Sci U S A; 2023 Aug; 120(31):e2307611120. PubMed ID: 37490531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films.
    Kim MS; Roy S; Lee J; Kim BG; Kim H; Park JH; Yun SJ; Han GH; Leem JY; Kim J
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28809-28815. PubMed ID: 27718557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin-Orbit Coupling.
    Tang CS; Yin X; Yang M; Wu D; Birowosuto MD; Wu J; Li C; Hettiarachchi C; Chin XY; Chang YH; Ouyang F; Dang C; Pennycook SJ; Feng YP; Wang S; Chi D; Breese MBH; Zhang W; Rusydi A; Wee ATS
    ACS Nano; 2019 Dec; 13(12):14529-14539. PubMed ID: 31702890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach.
    Bieniek M; Sadecka K; Szulakowska L; Hawrylak P
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.