These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30763981)

  • 21. Classification models and SAR analysis on CysLT1 receptor antagonists using machine learning algorithms.
    Wang H; Qin Z; Yan A
    Mol Divers; 2021 Aug; 25(3):1597-1616. PubMed ID: 33534023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico estimation of chemical aquatic toxicity on crustaceans using chemical category methods.
    Cao Q; Liu L; Yang H; Cai Y; Li W; Liu G; Lee PW; Tang Y
    Environ Sci Process Impacts; 2018 Sep; 20(9):1234-1243. PubMed ID: 30069560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational Prediction of Drug-Target Interactions via Ensemble Learning.
    Ezzat A; Wu M; Li X; Kwoh CK
    Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting Inhibitors for Multidrug Resistance Associated Protein-2 Transporter by Machine Learning Approach.
    Kharangarh S; Sandhu H; Tangadpalliwar S; Garg P
    Comb Chem High Throughput Screen; 2018; 21(8):557-566. PubMed ID: 30360705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity.
    Liu R; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Silico Prediction of Chemicals Binding to Aromatase with Machine Learning Methods.
    Du H; Cai Y; Yang H; Zhang H; Xue Y; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2017 May; 30(5):1209-1218. PubMed ID: 28414904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of Micronucleus Assay Outcome Using In Vivo Activity Data and Molecular Structure Features.
    Ramesh P; Veerappapillai S
    Appl Biochem Biotechnol; 2021 Dec; 193(12):4018-4034. PubMed ID: 34669110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discriminant models on mitochondrial toxicity improved by consensus modeling and resolving imbalance in training.
    Tang W; Chen J; Hong H
    Chemosphere; 2020 Aug; 253():126768. PubMed ID: 32464767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction.
    Guan D; Fan K; Spence I; Matthews S
    Regul Toxicol Pharmacol; 2018 Apr; 94():8-15. PubMed ID: 29337192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning based dynamic consensus model for predicting blood-brain barrier permeability.
    Mazumdar B; Deva Sarma PK; Mahanta HJ; Sastry GN
    Comput Biol Med; 2023 Jun; 160():106984. PubMed ID: 37137267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity prediction of small drug molecules of androgen receptor using multilevel ensemble model.
    Gupta VK; Rana PS
    J Bioinform Comput Biol; 2019 Oct; 17(5):1950033. PubMed ID: 31744364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational QSAR model combined molecular descriptors and fingerprints to predict HDAC1 inhibitors.
    Shi J; Zhao G; Wei Y
    Med Sci (Paris); 2018 Oct; 34 Focus issue F1():52-58. PubMed ID: 30403176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioactive Molecule Prediction Using Extreme Gradient Boosting.
    Babajide Mustapha I; Saeed F
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27483216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of Skin Disease Using Ensemble Data Mining Techniques and Feature Selection Method-a Comparative Study.
    Verma AK; Pal S; Kumar S
    Appl Biochem Biotechnol; 2020 Feb; 190(2):341-359. PubMed ID: 31350666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting.
    Mahmud SMH; Chen W; Meng H; Jahan H; Liu Y; Hasan SMM
    Anal Biochem; 2020 Jan; 589():113507. PubMed ID: 31734254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Datasets Construction and Development of QSAR Models for Predicting Micronucleus In Vitro and In Vivo Assay Outcomes.
    Khondkaryan L; Tevosyan A; Navasardyan H; Khachatrian H; Tadevosyan G; Apresyan L; Chilingaryan G; Navoyan Z; Stopper H; Babayan N
    Toxics; 2023 Sep; 11(9):. PubMed ID: 37755795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating molecular representations in machine learning models for drug response prediction and interpretability.
    Baptista D; Correia J; Pereira B; Rocha M
    J Integr Bioinform; 2022 Sep; 19(3):. PubMed ID: 36017668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.