These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 30764440)
1. Dose Response of Weed Seeds, Plant-Parasitic Nematodes, and Pathogens to Twelve Rates of Metam Sodium in a California Soil. Klose S; Ajwa HA; Browne GT; Subbarao KV; Martin FN; Fennimore SA; Westerdahl BB Plant Dis; 2008 Nov; 92(11):1537-1546. PubMed ID: 30764440 [TBL] [Abstract][Full Text] [Related]
2. Water and methyl isothiocyanate distribution in soil after drip fumigation. Nelson SD; Ajwa HA; Trout T; Stromberger M; Yates SR; Sharma S J Environ Qual; 2013 Sep; 42(5):1555-64. PubMed ID: 24216433 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of metam potassium on Fusarium oxysporum, Macrophomina phaseolina, Meloidogyne javanica, and seven weed species in microcosm experiments. Khatri K; Vallad G; Peres N; Desaegaer J; Regmi H; Boyd N Pest Manag Sci; 2021 Feb; 77(2):869-876. PubMed ID: 32946661 [TBL] [Abstract][Full Text] [Related]
4. Microbial aspects of accelerated degradation of metam sodium in soil. Triky-Dotan S; Ofek M; Austerweil M; Steiner B; Minz D; Katan J; Gamliel A Phytopathology; 2010 Apr; 100(4):367-75. PubMed ID: 20205540 [TBL] [Abstract][Full Text] [Related]
5. Effect of application timing and method on efficacy and phytotoxicity of 1,3-D, chloropicrin and metam-sodium combinations in squash plasticulture. Desaeger JA; Seebold KW; Csinos AS Pest Manag Sci; 2008 Mar; 64(3):230-8. PubMed ID: 18181144 [TBL] [Abstract][Full Text] [Related]
6. Generation and Dissipation of Methyl Isothiocyanate in Soils Following Metam Sodium Fumigation: Impact on Verticillium Control and Potato Yield. Triky-Dotan S; Austerweil M; Steiner B; Peretz-Alon Y; Katan J; Gamliel A Plant Dis; 2007 May; 91(5):497-503. PubMed ID: 30780692 [TBL] [Abstract][Full Text] [Related]
7. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures. Lu Z; Hebert VR; Miller GC Bull Environ Contam Toxicol; 2017 Feb; 98(2):257-261. PubMed ID: 27995294 [TBL] [Abstract][Full Text] [Related]
8. Spot drip application of dimethyl disulfide as a post-plant treatment for the control of plant parasitic nematodes and soilborne pathogens in grape production. Cabrera JA; Wang D; Gerik JS; Gan J Pest Manag Sci; 2014 Jul; 70(7):1151-7. PubMed ID: 24307137 [TBL] [Abstract][Full Text] [Related]
9. Drip application of methyl bromide alternative chemicals for control of soilborne pathogens and weeds. Gerik JS; Hanson BD Pest Manag Sci; 2011 Sep; 67(9):1129-33. PubMed ID: 21480465 [TBL] [Abstract][Full Text] [Related]
10. Accelerated degradation of metam-sodium in soil and consequences for root-disease management. Triky-Dotan S; Austerweil M; Steiner B; Peretz-Alon Y; Katan J; Gamliel A Phytopathology; 2009 Apr; 99(4):362-8. PubMed ID: 19271977 [TBL] [Abstract][Full Text] [Related]
11. Determination of methyl isocyanate in outdoor residential air near metam-sodium soil fumigations. Woodrow JE; LePage JT; Miller GC; Hebert VR J Agric Food Chem; 2014 Sep; 62(36):8921-7. PubMed ID: 25144617 [TBL] [Abstract][Full Text] [Related]
12. Modeling methyl isothiocyanate soil flux and emission ratio from a field following a chemigation of metam-sodium. Li LY; Barry T; Mongar K; Wofford P J Environ Qual; 2006; 35(3):707-13. PubMed ID: 16585612 [TBL] [Abstract][Full Text] [Related]
13. Distribution and efficacy of drip-applied metam-sodium against the survival of Rhizoctonia solani and yellow nutsedge in plastic-mulched sandy soil beds. Candole BL; Csinos AS; Wang D Pest Manag Sci; 2007 May; 63(5):468-75. PubMed ID: 17397113 [TBL] [Abstract][Full Text] [Related]
14. Surface water seal application to minimize volatilization loss of methyl isothiocyanate from soil columns. Simpson CR; Nelson SD; Stratmann JE; Ajwa HA Pest Manag Sci; 2010 Jun; 66(6):686-92. PubMed ID: 20232287 [TBL] [Abstract][Full Text] [Related]
15. Effect of Soil Solarization and Cover Crops on Populations of Selected Soilborne Plant Pathogens in Western Oregon. Pinkerton JN; Ivors KL; Miller ML; Moore LW Plant Dis; 2000 Sep; 84(9):952-960. PubMed ID: 30832026 [TBL] [Abstract][Full Text] [Related]
16. Degradation of methyl isothiocyanate and chloropicrin in forest nursery soils. Zhang Y; Spokas K; Wang D J Environ Qual; 2005; 34(5):1566-72. PubMed ID: 16091609 [TBL] [Abstract][Full Text] [Related]
17. Incompatibility of metam sodium with halogenated fumigants. Guo M; Yates SR; Papiernik SK; Zheng W Pest Manag Sci; 2005 May; 61(5):467-76. PubMed ID: 15816019 [TBL] [Abstract][Full Text] [Related]
18. Fumigant distribution in forest nursery soils under water seal and plastic film after application of dazomet, metam-sodium and chloropicrin. Wang D; Fraedrich SW; Juzwik J; Spokas K; Zhang Y; Koskinen WC Pest Manag Sci; 2006 Mar; 62(3):263-73. PubMed ID: 16475238 [TBL] [Abstract][Full Text] [Related]
19. Changes in microorganisms populations in the soil after fumigation. Meszka B; Chałańska A; Sobiczewski P; Bryk H; Malusa E; Slusarski C Commun Agric Appl Biol Sci; 2011; 76(4):751-5. PubMed ID: 22702196 [TBL] [Abstract][Full Text] [Related]
20. Behavior of methyl isothiocyanate in soils under field conditions in Morocco. El Hadiri N; Ammati M; Chgoura M; Mounir K Chemosphere; 2003 Aug; 52(5):927-32. PubMed ID: 12757794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]