BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30764485)

  • 1. Gold Nanodisks Plasmonic Array for Hydrogen Sensing at Low Temperature.
    Sturaro M; Zacco G; Zilio P; Surpi A; Bazzan M; Martucci A
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30764485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography.
    Lee SW; Lee KS; Ahn J; Lee JJ; Kim MG; Shin YB
    ACS Nano; 2011 Feb; 5(2):897-904. PubMed ID: 21222487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Food Quality Monitor: Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants.
    Tseng SY; Li SY; Yi SY; Sun AY; Gao DY; Wan D
    ACS Appl Mater Interfaces; 2017 May; 9(20):17306-17316. PubMed ID: 28471650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation.
    Zhang S; Li GC; Chen Y; Zhu X; Liu SD; Lei DY; Duan H
    ACS Nano; 2016 Dec; 10(12):11105-11114. PubMed ID: 28024358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon.
    Rodríguez-Cantó PJ; Martínez-Marco M; Rodríguez-Fortuño FJ; Tomás-Navarro B; Ortuño R; Peransí-Llopis S; Martínez A
    Opt Express; 2011 Apr; 19(8):7664-72. PubMed ID: 21503075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics.
    Feng D; Zhang H; Xu S; Tian L; Song N
    Nanotechnology; 2017 Mar; 28(11):115703. PubMed ID: 28195075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal deformation of gold nanostructures and its influence on surface plasmon resonance sensing.
    Kim HT; Pathak M; Rajasekaran K; Gupta AK; Yu M
    Nanoscale Adv; 2020 Mar; 2(3):1128-1137. PubMed ID: 36133066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors.
    Yin A; He Q; Lin Z; Luo L; Liu Y; Yang S; Wu H; Ding M; Huang Y; Duan X
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):583-7. PubMed ID: 26783058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of plasmonic arrays of nanodisks and nanotriangles by nanotip indentation lithography and their optical properties.
    Kim J; Lee JS; Kim JW; De Wolf P; Moon S; Kim DH; Song JH; Kim J; Kim T; Nam SH; Suh YD; Kim KH; Kim H; Shin C
    Nanoscale; 2021 Mar; 13(8):4475-4484. PubMed ID: 33595003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures.
    Gao L; Zhang Y; Zhang H; Doshay S; Xie X; Luo H; Shah D; Shi Y; Xu S; Fang H; Fan JA; Nordlander P; Huang Y; Rogers JA
    ACS Nano; 2015 Jun; 9(6):5968-75. PubMed ID: 25906085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Sensitive Plasmonic Optical Sensors Based on Gold Core-Satellite Nanostructures Immobilized on Glass Substrates.
    Ode K; Honjo M; Takashima Y; Tsuruoka T; Akamatsu K
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20522-6. PubMed ID: 27482968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum.
    Islam MS; Sultana J; Rifat AA; Ahmed R; Dinovitser A; Ng BW; Ebendorff-Heidepriem H; Abbott D
    Opt Express; 2018 Nov; 26(23):30347-30361. PubMed ID: 30469909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape effect on a single-nanoparticle-based plasmonic nanosensor.
    Shen H; Lu G; Zhang T; Liu J; Gu Y; Perriat P; Martini M; Tillement O; Gong Q
    Nanotechnology; 2013 Jul; 24(28):285502. PubMed ID: 23792456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime.
    Ghosh PK; Debu DT; French DA; Herzog JB
    PLoS One; 2017; 12(5):e0177463. PubMed ID: 28486554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing.
    Dahlin AB; Chen S; Jonsson MP; Gunnarsson L; Käll M; Höök F
    Anal Chem; 2009 Aug; 81(16):6572-80. PubMed ID: 19621881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties.
    Barchiesi D; Kessentini S; Guillot N; de la Chapelle ML; Grosges T
    Opt Express; 2013 Jan; 21(2):2245-62. PubMed ID: 23389205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal geometric parameters of ordered arrays of nanoprisms for enhanced sensitivity in localized plasmon based sensors.
    Michieli N; Kalinic B; Scian C; Cesca T; Mattei G
    Biosens Bioelectron; 2015 Mar; 65():346-53. PubMed ID: 25461180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Theoretical Modeling of Plasmonic Sensing of Hydrogen Uptake in Palladium Nanodisks.
    Poyli MA; Silkin VM; Chernov IP; Echenique PM; Muiño RD; Aizpurua J
    J Phys Chem Lett; 2012 Sep; 3(18):2556-61. PubMed ID: 26295874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocrystalline TiO
    Gazzola E; Cittadini M; Angiola M; Brigo L; Guglielmi M; Romanato F; Martucci A
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32751278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.