These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30764612)

  • 1. Evolution of Cavitation Bubble in Tap Water by Continuous-Wave Laser Focused on a Metallic Surface.
    Kim N; Park H; Do H
    Langmuir; 2019 Mar; 35(9):3308-3318. PubMed ID: 30764612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vapor and Gas-Bubble Growth Dynamics around Laser-Irradiated, Water-Immersed Plasmonic Nanoparticles.
    Wang Y; Zaytsev ME; The HL; Eijkel JC; Zandvliet HJ; Zhang X; Lohse D
    ACS Nano; 2017 Feb; 11(2):2045-2051. PubMed ID: 28088847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.
    Kang BK; Kim MS; Park JG
    Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy partitioning in laser-induced millimeter-sized spherical cavitation up to the fourth oscillation.
    Wen H; Yao Z; Zhong Q; Tian Y; Sun Y; Wang F
    Ultrason Sonochem; 2023 May; 95():106391. PubMed ID: 37003210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavitation inception pressure and bubble cloud formation due to the backscattering of high-intensity focused ultrasound from a laser-induced bubble.
    Horiba T; Ogasawara T; Takahira H
    J Acoust Soc Am; 2020 Feb; 147(2):1207. PubMed ID: 32113276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air.
    Li X; Wang Y; Zaytsev ME; Lajoinie G; Le The H; Bomer JG; Eijkel JCT; Zandvliet HJW; Zhang X; Lohse D
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(38):23586-23593. PubMed ID: 31583035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble evolution and properties in homogeneous nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves.
    Veysset D; Gutiérrez-Hernández U; Dresselhaus-Cooper L; De Colle F; Kooi S; Nelson KA; Quinto-Su PA; Pezeril T
    Phys Rev E; 2018 May; 97(5-1):053112. PubMed ID: 29906915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium bubbles in a flowing langmuir monolayer.
    Muruganathan R; Khattari Z; Fischer TM
    J Phys Chem B; 2005 Nov; 109(46):21772-8. PubMed ID: 16853828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of laser-induced cavitation bubble during expansion over sharp-edge geometry submerged in liquid - an inside view by diffuse illumination.
    Senegačnik M; Kunimoto K; Yamaguchi S; Kimura K; Sakka T; Gregorčič P
    Ultrason Sonochem; 2021 May; 73():105460. PubMed ID: 33774586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of single bubble cleaning.
    Reuter F; Mettin R
    Ultrason Sonochem; 2016 Mar; 29():550-62. PubMed ID: 26187759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bubble dynamic evolution, material strengthening and chemical effect induced by laser cavitation peening.
    Gu J; Luo C; Lu Z; Ma P; Xu X; Ren X
    Ultrason Sonochem; 2021 Apr; 72():105441. PubMed ID: 33385635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of dissolved carbon dioxide on cavitation intensity in mechanical heart valves.
    Herbertson LH; Manning KB; Reddy V; Fontaine AA; Tarbell JM; Deutsch S
    J Heart Valve Dis; 2005 Nov; 14(6):835-42. PubMed ID: 16363068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of cavitation inception by gas bubble injection: a numerical study focusing on bubble-bubble interaction.
    Ida M; Naoe T; Futakawa M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046309. PubMed ID: 17995108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cavitation bubble interaction with temporally separated fs-laser pulses.
    Tinne N; Knoop G; Kallweit N; Veith S; Bleeker S; Lubatschowski H; Krüger A; Ripken T
    J Biomed Opt; 2014 Apr; 19(4):048001. PubMed ID: 24781592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of vortex assisted metal condensation in superfluid helium.
    Popov E; Mammetkuliyev M; Eloranta J
    J Chem Phys; 2013 May; 138(20):204307. PubMed ID: 23742475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant and explosive plasmonic bubbles by delayed nucleation.
    Wang Y; Zaytsev ME; Lajoinie G; The HL; Eijkel JCT; van den Berg A; Versluis M; Weckhuysen BM; Zhang X; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7676-7681. PubMed ID: 29997175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particulate Projectiles Driven by Cavitation Bubbles.
    Ren Z; Zuo Z; Wu S; Liu S
    Phys Rev Lett; 2022 Jan; 128(4):044501. PubMed ID: 35148129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.