These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30764754)

  • 1. The epigenetic regulation of HsMar1, a human DNA transposon.
    Renault S; Genty M; Gabori A; Boisneau C; Esnault C; Dugé de Bernonville T; Augé-Gouillou C
    BMC Genet; 2019 Feb; 20(1):17. PubMed ID: 30764754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends.
    Miskey C; Papp B; Mátés L; Sinzelle L; Keller H; Izsvák Z; Ivics Z
    Mol Cell Biol; 2007 Jun; 27(12):4589-600. PubMed ID: 17403897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced targeted DNA methylation of the CMV and endogenous promoters with dCas9-DNMT3A3L entails distinct subsequent histone modification changes in CHO cells.
    Marx N; Dhiman H; Schmieder V; Freire CM; Nguyen LN; Klanert G; Borth N
    Metab Eng; 2021 Jul; 66():268-282. PubMed ID: 33965614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase.
    Liu D; Bischerour J; Siddique A; Buisine N; Bigot Y; Chalmers R
    Mol Cell Biol; 2007 Feb; 27(3):1125-32. PubMed ID: 17130240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome.
    Robertson HM; Zumpano KL
    Gene; 1997 Dec; 205(1-2):203-17. PubMed ID: 9461395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines.
    Veith N; Ziehr H; MacLeod RA; Reamon-Buettner SM
    BMC Biotechnol; 2016 Jan; 16():6. PubMed ID: 26800878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic machinery is functionally conserved in cephalopods.
    Macchi F; Edsinger E; Sadler KC
    BMC Biol; 2022 Sep; 20(1):202. PubMed ID: 36104784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and genome-wide analyses suggest that transposon-derived protein SETMAR alters transcription and splicing.
    Chen Q; Bates AM; Hanquier JN; Simpson E; Rusch DB; Podicheti R; Liu Y; Wek RC; Cornett EM; Georgiadis MM
    J Biol Chem; 2022 May; 298(5):101894. PubMed ID: 35378129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species-specific chromatin landscape determines how transposable elements shape genome evolution.
    Huang Y; Shukla H; Lee YCG
    Elife; 2022 Aug; 11():. PubMed ID: 35997258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing of
    Burgess D; Li H; Zhao M; Kim SY; Lisch D
    Genetics; 2020 Jun; 215(2):379-391. PubMed ID: 32229532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bandit, a new DNA transposon from a hookworm-possible horizontal genetic transfer between host and parasite.
    Laha T; Loukas A; Wattanasatitarpa S; Somprakhon J; Kewgrai N; Sithithaworn P; Kaewkes S; Mitreva M; Brindley PJ
    PLoS Negl Trop Dis; 2007 Sep; 1(1):e35. PubMed ID: 17989781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of DNA transposition by CpG methylation and chromatin structure in human cells.
    Jursch T; Miskey C; Izsvák Z; Ivics Z
    Mob DNA; 2013 May; 4(1):15. PubMed ID: 23676100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsmar1 transposition is sensitive to the topology of the transposon donor and the target.
    Claeys Bouuaert C; Chalmers R
    PLoS One; 2013; 8(1):e53690. PubMed ID: 23341977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAR elements and transposons for improved transgene integration and expression.
    Ley D; Harraghy N; Le Fourn V; Bire S; Girod PA; Regamey A; Rouleux-Bonnin F; Bigot Y; Mermod N
    PLoS One; 2013; 8(4):e62784. PubMed ID: 23646143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic interplay between mouse endogenous retroviruses and host genes.
    Rebollo R; Miceli-Royer K; Zhang Y; Farivar S; Gagnier L; Mager DL
    Genome Biol; 2012 Oct; 13(10):R89. PubMed ID: 23034137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensating for over-production inhibition of the Hsmar1 transposon in
    Tellier M; Chalmers R
    Mob DNA; 2020; 11():5. PubMed ID: 31938044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of genetic and epigenetic changes to escape from X-chromosome inactivation.
    Balaton BP; Brown CJ
    Epigenetics Chromatin; 2021 Jun; 14(1):30. PubMed ID: 34187555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition.
    Wang Y; Pryputniewicz-Dobrinska D; Nagy EÉ; Kaufman CD; Singh M; Yant S; Wang J; Dalda A; Kay MA; Ivics Z; Izsvák Z
    Nucleic Acids Res; 2017 Jan; 45(1):311-326. PubMed ID: 27913727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response.
    Wheeler BS
    Chromosome Res; 2013 Dec; 21(6-7):587-600. PubMed ID: 24254230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.