BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 30765461)

  • 1. Statins Perturb G
    Tennakoon M; Kankanamge D; Senarath K; Fasih Z; Karunarathne A
    Mol Pharmacol; 2019 Apr; 95(4):361-375. PubMed ID: 30765461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gγ identity dictates efficacy of Gβγ signaling and macrophage migration.
    Senarath K; Payton JL; Kankanamge D; Siripurapu P; Tennakoon M; Karunarathne A
    J Biol Chem; 2018 Feb; 293(8):2974-2989. PubMed ID: 29317505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CaaX-motif-adjacent residues influence G protein gamma (Gγ) prenylation under suboptimal conditions.
    Tennakoon M; Thotamune W; Payton JL; Karunarathne A
    J Biol Chem; 2023 Nov; 299(11):105269. PubMed ID: 37739036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A short C-terminal peptide in Gγ regulates Gβγ signaling efficacy.
    Tennakoon M; Senarath K; Kankanamge D; Chadee DN; Karunarathne A
    Mol Biol Cell; 2021 Aug; 32(16):1446-1458. PubMed ID: 34106735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statin-induced blockade of prenylation alters nucleocytoplasmic shuttling of GTP-binding proteins gamma2 and beta2 and enhances their suppressive effect on glucocorticoid receptor transcriptional activity.
    Kino T; Kozasa T; Chrousos GP
    Eur J Clin Invest; 2005 Aug; 35(8):508-13. PubMed ID: 16101671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.
    Samaradivakara S; Kankanamge D; Senarath K; Ratnayake K; Karunarathne A
    Biochem Biophys Res Commun; 2018 Sep; 503(1):165-170. PubMed ID: 29864421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prenylation-deficient G protein gamma subunits disrupt GPCR signaling in the zebrafish.
    Mulligan T; Blaser H; Raz E; Farber SA
    Cell Signal; 2010 Feb; 22(2):221-33. PubMed ID: 19786091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subtype-dependent regulation of Gβγ signalling.
    Tennakoon M; Senarath K; Kankanamge D; Ratnayake K; Wijayaratna D; Olupothage K; Ubeysinghe S; Martins-Cannavino K; Hébert TE; Karunarathne A
    Cell Signal; 2021 Jun; 82():109947. PubMed ID: 33582184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond the G protein α subunit: investigating the functional impact of other components of the Gαi
    Rysiewicz B; Błasiak E; Mystek P; Dziedzicka-Wasylewska M; Polit A
    Cell Commun Signal; 2023 Oct; 21(1):279. PubMed ID: 37817242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-protein-mediated signaling in cholesterol-enriched arterial smooth muscle cells. 1. Reduced membrane-associated G-protein content due to diminished isoprenylation of G-gamma subunits and p21ras.
    Pomerantz KB; Lander HM; Summers B; Robishaw JD; Balcueva E; Hajjar DP
    Biochemistry; 1997 Aug; 36(31):9523-31. PubMed ID: 9235998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atorvastatin desensitizes beta-adrenergic signaling in cardiac myocytes via reduced isoprenylation of G-protein gamma-subunits.
    Mühlhäuser U; Zolk O; Rau T; Münzel F; Wieland T; Eschenhagen T
    FASEB J; 2006 Apr; 20(6):785-7. PubMed ID: 16467371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of G Protein βγ Signaling.
    Senarath K; Kankanamge D; Samaradivakara S; Ratnayake K; Tennakoon M; Karunarathne A
    Int Rev Cell Mol Biol; 2018; 339():133-191. PubMed ID: 29776603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signaling through a G Protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model.
    Philip F; Sengupta P; Scarlata S
    J Biol Chem; 2007 Jun; 282(26):19203-16. PubMed ID: 17420253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling.
    Blumer JB; Smrcka AV; Lanier SM
    Pharmacol Ther; 2007 Mar; 113(3):488-506. PubMed ID: 17240454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Multiple-Reaction Monitoring Proteomic Analysis of Gβ and Gγ Subunits in C57Bl6/J Brain Synaptosomes.
    Yim YY; McDonald WH; Hyde K; Cruz-Rodríguez O; Tesmer JJG; Hamm HE
    Biochemistry; 2017 Oct; 56(40):5405-5416. PubMed ID: 28880079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes.
    Dupré DJ; Robitaille M; Rebois RV; Hébert TE
    Annu Rev Pharmacol Toxicol; 2009; 49():31-56. PubMed ID: 18834311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statins and protein prenylation in cancer cell biology and therapy.
    Garcia-Ruiz C; Morales A; Fernandez-Checa JC
    Anticancer Agents Med Chem; 2012 May; 12(4):303-15. PubMed ID: 22413970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies.
    Rudomanova V; Blaxall BC
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):1883-1892. PubMed ID: 28130200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abrogation of insulin-like growth factor-I (IGF-I) and insulin action by mevalonic acid depletion: synergy between protein prenylation and receptor glycosylation pathways.
    Siddals KW; Marshman E; Westwood M; Gibson JM
    J Biol Chem; 2004 Sep; 279(37):38353-9. PubMed ID: 15247258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Hydroxy-3-methylglutaryl coenzyme a reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture.
    Guijarro C; Blanco-Colio LM; Ortego M; Alonso C; Ortiz A; Plaza JJ; Díaz C; Hernández G; Egido J
    Circ Res; 1998 Sep; 83(5):490-500. PubMed ID: 9734471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.