These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30765563)

  • 41. Transparent thermal insulation silica aerogels.
    Wang J; Petit D; Ren S
    Nanoscale Adv; 2020 Dec; 2(12):5504-5515. PubMed ID: 36133881
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances.
    Jia C; Li L; Liu Y; Fang B; Ding H; Song J; Liu Y; Xiang K; Lin S; Li Z; Si W; Li B; Sheng X; Wang D; Wei X; Wu H
    Nat Commun; 2020 Jul; 11(1):3732. PubMed ID: 32709868
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hyperelastic Kevlar Nanofiber Aerogels as Robust Thermal Switches for Smart Thermal Management.
    Hu P; Wang J; Zhang P; Wu F; Cheng Y; Wang J; Sun Z
    Adv Mater; 2023 Jan; 35(3):e2207638. PubMed ID: 36271721
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fiber Sedimentation and Layer-By-Layer Assembly Strategy for Designing Biomimetic Quasi-Ordered Mullite Fiber Aerogels as Extreme Conditions Thermal Insulators.
    Li W; Jiang Y; Liu H; Wang C; Zhou X; Jiang S; Mu Y; Wang L; He X; Li M; He F
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46010-46021. PubMed ID: 37737705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal Conductivity of Nanoporous Materials: Where Is the Limit?
    Merillas B; Vareda JP; Martín-de León J; Rodríguez-Pérez MÁ; Durães L
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808603
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson's Ratio.
    Yan P; Brown E; Su Q; Li J; Wang J; Xu C; Zhou C; Lin D
    Small; 2017 Oct; 13(38):. PubMed ID: 28834394
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering Covalent Heterointerface Enables Superelastic Amorphous SiC Meta-Aerogels.
    Zhang X; Yu J; Zhao C; Si Y
    ACS Nano; 2023 Nov; 17(21):21813-21821. PubMed ID: 37909358
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal conductivity of monolithic organic aerogels.
    Lu X; Arduini-Schuster MC; Kuhn J; Nilsson O; Fricke J; Pekala RW
    Science; 1992 Feb; 255(5047):971-2. PubMed ID: 17793159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson's Ratio.
    Xu X; Zhang Q; Yu Y; Chen W; Hu H; Li H
    Adv Mater; 2016 Nov; 28(41):9223-9230. PubMed ID: 27594204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Drastically Enhancing Moduli of Graphene-Coated Carbon Nanotube Aerogels via Densification while Retaining Temperature-Invariant Superelasticity and Ultrahigh Efficiency.
    Tsui MN; Kim KH; Islam MF
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37954-37961. PubMed ID: 28991429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel 3D Network Architectured Hybrid Aerogel Comprising Epoxy, Graphene, and Hydroxylated Boron Nitride Nanosheets.
    Yang W; Wang NN; Ping P; Yuen AC; Li A; Zhu SE; Wang LL; Wu J; Chen TB; Si JY; Rao BD; Lu HD; Chan QN; Yeoh GH
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40032-40043. PubMed ID: 30379530
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly cross-linked carbon tube aerogels with enhanced elasticity and fatigue resistance.
    Zhuang L; Lu D; Zhang J; Guo P; Su L; Qin Y; Zhang P; Xu L; Niu M; Peng K; Wang H
    Nat Commun; 2023 Jun; 14(1):3178. PubMed ID: 37264018
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.
    Williams JC; Nguyen BN; McCorkle L; Scheiman D; Griffin JS; Steiner SA; Meador MA
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1801-1809. PubMed ID: 28060486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Superelastic Hard Carbon Nanofiber Aerogels.
    Yu ZL; Qin B; Ma ZY; Huang J; Li SC; Zhao HY; Li H; Zhu YB; Wu HA; Yu SH
    Adv Mater; 2019 Jun; 31(23):e1900651. PubMed ID: 30985032
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity.
    Hayase G; Kanamori K; Abe K; Yano H; Maeno A; Kaji H; Nakanishi K
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9466-71. PubMed ID: 24865571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal Superinsulating Materials Made from Nanofibrillated Cellulose-Stabilized Pickering Emulsions.
    Jiménez-Saelices C; Seantier B; Grohens Y; Capron I
    ACS Appl Mater Interfaces; 2018 May; 10(18):16193-16202. PubMed ID: 29684278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation and Characterization of Polyimide Aerogels with a Uniform Nanoporous Framework.
    Zhong Y; Kong Y; Zhang J; Chen Y; Li B; Wu X; Liu S; Shen X; Cui S
    Langmuir; 2018 Sep; 34(36):10529-10536. PubMed ID: 30118236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Building-Envelope-Inspired, Thermomechanically Robust All-Fiber Ceramic Meta-Aerogel for Temperature-Controlled Dominant Infrared Camouflage.
    Liu H; Zhang X; Liao Y; Yu J; Liu YT; Ding B
    Adv Mater; 2024 Jun; 36(25):e2313720. PubMed ID: 38489784
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Y₂O₃ Additive on Mechanical and Thermal Properties of Cordierite-Mullite Ceramics.
    Kim SY; Lim JH; Shin HS; Yeo DH; Yoon HG
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1580-1584. PubMed ID: 30469226
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity.
    Yin J; Li X; Zhou J; Guo W
    Nano Lett; 2013 Jul; 13(7):3232-6. PubMed ID: 23799859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.