These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 30765724)
1. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI. McElcheran CE; Golestanirad L; Iacono MI; Wei PS; Yang B; Anderson KJT; Bonmassar G; Graham SJ Sci Rep; 2019 Feb; 9(1):2124. PubMed ID: 30765724 [TBL] [Abstract][Full Text] [Related]
2. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging. McElcheran CE; Yang B; Anderson KJ; Golenstani-Rad L; Graham SJ PLoS One; 2015; 10(8):e0134379. PubMed ID: 26237218 [TBL] [Abstract][Full Text] [Related]
3. Parallel radiofrequency transmission at 3 tesla to improve safety in bilateral implanted wires in a heterogeneous model. McElcheran CE; Yang B; Anderson KJT; Golestanirad L; Graham SJ Magn Reson Med; 2017 Dec; 78(6):2406-2415. PubMed ID: 28244142 [TBL] [Abstract][Full Text] [Related]
4. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management. Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973 [TBL] [Abstract][Full Text] [Related]
5. Parallel transmission to reduce absorbed power around deep brain stimulation devices in MRI: Impact of number and arrangement of transmit channels. Guerin B; Angelone LM; Dougherty D; Wald LL Magn Reson Med; 2020 Jan; 83(1):299-311. PubMed ID: 31389069 [TBL] [Abstract][Full Text] [Related]
6. Effect of surgical modification of deep brain stimulation lead trajectories on radiofrequency heating during MRI at 3T: from phantom experiments to clinical implementation. Vu J; Bhusal B; Rosenow JM; Pilitsis J; Golestanirad L J Neurosurg; 2024 May; 140(5):1459-1470. PubMed ID: 37948679 [TBL] [Abstract][Full Text] [Related]
7. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T. Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285 [TBL] [Abstract][Full Text] [Related]
8. A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems. Vu J; Bhusal B; Nguyen BT; Sanpitak P; Nowac E; Pilitsis J; Rosenow J; Golestanirad L PLoS One; 2022; 17(12):e0278187. PubMed ID: 36490249 [TBL] [Abstract][Full Text] [Related]
9. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations. Kazemivalipour E; Vu J; Lin S; Bhusal B; Thanh Nguyen B; Kirsch J; Elahi B; Rosenow J; Atalar E; Golestanirad L Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6143-6146. PubMed ID: 33019373 [TBL] [Abstract][Full Text] [Related]
11. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations. Golestanirad L; Kazemivalipour E; Lampman D; Habara H; Atalar E; Rosenow J; Pilitsis J; Kirsch J Magn Reson Med; 2020 Jun; 83(6):2284-2292. PubMed ID: 31677308 [TBL] [Abstract][Full Text] [Related]
12. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating. Gudino N; Sonmez M; Yao Z; Baig T; Nielles-Vallespin S; Faranesh AZ; Lederman RJ; Martens M; Balaban RS; Hansen MS; Griswold MA Med Phys; 2015 Jan; 42(1):359-71. PubMed ID: 25563276 [TBL] [Abstract][Full Text] [Related]
14. A workflow for predicting radiofrequency-induced heating around bilateral deep brain stimulation electrodes in MRI. Zulkarnain NIH; Sadeghi-Tarakameh A; Thotland J; Harel N; Eryaman Y Med Phys; 2024 Feb; 51(2):1007-1018. PubMed ID: 38153187 [TBL] [Abstract][Full Text] [Related]
15. Reconfigurable MRI coil technology can substantially reduce RF heating of deep brain stimulation implants: First in-vitro study of RF heating reduction in bilateral DBS leads at 1.5 T. Golestanirad L; Kazemivalipour E; Keil B; Downs S; Kirsch J; Elahi B; Pilitsis J; Wald LL PLoS One; 2019; 14(8):e0220043. PubMed ID: 31390346 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of using linearly polarized rotating birdcage transmitters and close-fitting receive arrays in MRI to reduce SAR in the vicinity of deep brain simulation implants. Golestanirad L; Keil B; Angelone LM; Bonmassar G; Mareyam A; Wald LL Magn Reson Med; 2017 Apr; 77(4):1701-1712. PubMed ID: 27059266 [TBL] [Abstract][Full Text] [Related]
17. A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T. Destruel A; Fuentes M; Weber E; O'Brien K; Jin J; Liu F; Barth M; Crozier S Magn Reson Med; 2019 Jun; 81(6):3826-3839. PubMed ID: 30803001 [TBL] [Abstract][Full Text] [Related]
18. Technical note: System uncertainty on four- and eight-channel parallel RF transmission for safe MRI of deep brain stimulation devices. Yang B; Chen CH; Graham SJ Med Phys; 2023 Sep; 50(9):5913-5919. PubMed ID: 37469178 [TBL] [Abstract][Full Text] [Related]
19. Evaluating Accuracy of Numerical Simulations in Predicting Heating of Wire Implants During MRI at 1.5 T. Vu J; Bhusal B; Nguyen BT; Golestanirad L Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6107-6110. PubMed ID: 33019364 [TBL] [Abstract][Full Text] [Related]