These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 30765744)
1. Regional specificity of cortico-thalamic coupling strength and directionality during waxing and waning of spike and wave discharges. Lüttjohann A; Pape HC Sci Rep; 2019 Feb; 9(1):2100. PubMed ID: 30765744 [TBL] [Abstract][Full Text] [Related]
2. Termination of ongoing spike-wave discharges investigated by cortico-thalamic network analyses. Lüttjohann A; Schoffelen JM; van Luijtelaar G Neurobiol Dis; 2014 Oct; 70():127-37. PubMed ID: 24953875 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of directional coupling underlying spike-wave discharges. Sysoeva MV; Lüttjohann A; van Luijtelaar G; Sysoev IV Neuroscience; 2016 Feb; 314():75-89. PubMed ID: 26633265 [TBL] [Abstract][Full Text] [Related]
4. Contribution of intralaminar thalamic nuclei to spike-and-wave-discharges during spontaneous seizures in a genetic rat model of absence epilepsy. Seidenbecher T; Pape HC Eur J Neurosci; 2001 Apr; 13(8):1537-46. PubMed ID: 11328348 [TBL] [Abstract][Full Text] [Related]
5. Cortical and thalamic lesions in rats with genetic absence epilepsy. Vergnes M; Marescaux C J Neural Transm Suppl; 1992; 35():71-83. PubMed ID: 1512595 [TBL] [Abstract][Full Text] [Related]
6. Neuropeptide Y affects thalamic reticular nucleus neuronal firing and network synchronization associated with suppression of spike-wave discharges. Ali I; Gandrathi A; Zheng T; Morris MJ; O'Brien TJ; French C Epilepsia; 2018 Jul; 59(7):1444-1454. PubMed ID: 29923603 [TBL] [Abstract][Full Text] [Related]
7. Higher-order thalamic nuclei facilitate the generalization and maintenance of spike-and-wave discharges of absence seizures. Atherton Z; Nagy O; Barcsai L; Sere P; Zsigri N; Földi T; Gellért L; Berényi A; Crunelli V; Lőrincz ML Neurobiol Dis; 2023 Mar; 178():106025. PubMed ID: 36731682 [TBL] [Abstract][Full Text] [Related]
8. [Thalamo-Cortical Mechanisms of Initiation, Maintenance and Termination of Spike-wave Discharges at WAG/Rij rats]. Sysoeva MV; Sitnikova E; Sysoev IV Zh Vyssh Nerv Deiat Im I P Pavlova; 2016; 66(1):103-12. PubMed ID: 27263280 [TBL] [Abstract][Full Text] [Related]
9. The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy. Lüttjohann A; van Luijtelaar G Neurobiol Dis; 2012 Jul; 47(1):49-60. PubMed ID: 22465080 [TBL] [Abstract][Full Text] [Related]
10. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Pinault D; Vergnes M; Marescaux C Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311 [TBL] [Abstract][Full Text] [Related]
11. Relations between cortical and thalamic cellular activities during absence seizures in rats. Seidenbecher T; Staak R; Pape HC Eur J Neurosci; 1998 Mar; 10(3):1103-12. PubMed ID: 9753178 [TBL] [Abstract][Full Text] [Related]
12. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats. Sitnikova E; van Luijtelaar G Epilepsia; 2007 Dec; 48(12):2296-311. PubMed ID: 18196621 [TBL] [Abstract][Full Text] [Related]
13. Changes in corticocortical and corticohippocampal network during absence seizures in WAG/Rij rats revealed with time varying Granger causality. Sysoeva MV; Vinogradova LV; Kuznetsova GD; Sysoev IV; van Rijn CM Epilepsy Behav; 2016 Nov; 64(Pt A):44-50. PubMed ID: 27728902 [TBL] [Abstract][Full Text] [Related]
14. Granger causality: cortico-thalamic interdependencies during absence seizures in WAG/Rij rats. Sitnikova E; Dikanev T; Smirnov D; Bezruchko B; van Luijtelaar G J Neurosci Methods; 2008 May; 170(2):245-54. PubMed ID: 18313761 [TBL] [Abstract][Full Text] [Related]
15. Cortical and thalamic coherence during spike-wave seizures in WAG/Rij rats. Sitnikova E; van Luijtelaar G Epilepsy Res; 2006 Oct; 71(2-3):159-80. PubMed ID: 16879948 [TBL] [Abstract][Full Text] [Related]
16. Dynamical mesoscale model of absence seizures in genetic models. Medvedeva TM; Sysoeva MV; Lüttjohann A; van Luijtelaar G; Sysoev IV PLoS One; 2020; 15(9):e0239125. PubMed ID: 32991590 [TBL] [Abstract][Full Text] [Related]
17. Thalamic multiple-unit activity underlying spike-wave discharges in anesthetized rats. Inoue M; Duysens J; Vossen JM; Coenen AM Brain Res; 1993 May; 612(1-2):35-40. PubMed ID: 8330210 [TBL] [Abstract][Full Text] [Related]
18. Electroencephalographic precursors of spike-wave discharges in a genetic rat model of absence epilepsy: Power spectrum and coherence EEG analyses. Sitnikova E; van Luijtelaar G Epilepsy Res; 2009 Apr; 84(2-3):159-71. PubMed ID: 19269137 [TBL] [Abstract][Full Text] [Related]
19. Peri-ictal network dynamics of spike-wave discharges: phase and spectral characteristics. Lüttjohann A; Schoffelen JM; van Luijtelaar G Exp Neurol; 2013 Jan; 239():235-47. PubMed ID: 23124095 [TBL] [Abstract][Full Text] [Related]
20. Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5-9 Hz oscillations. Pinault D J Physiol; 2003 Nov; 552(Pt 3):881-905. PubMed ID: 12923213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]