BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30765836)

  • 1. Selective Capture and Purification of MicroRNAs and Intracellular Proteins through Antisense-vectorized Magnetic Nanobeads.
    Gessner I; Yu X; Jüngst C; Klimpel A; Wang L; Fischer T; Neundorf I; Schauss AC; Odenthal M; Mathur S
    Sci Rep; 2019 Feb; 9(1):2069. PubMed ID: 30765836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles.
    Liu XQ; Song WJ; Sun TM; Zhang PZ; Wang J
    Mol Pharm; 2011 Feb; 8(1):250-9. PubMed ID: 21138272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles.
    Kim JH; Yeom JH; Ko JJ; Han MS; Lee K; Na SY; Bae J
    J Biotechnol; 2011 Sep; 155(3):287-92. PubMed ID: 21807040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The principles of MiRNA-masking antisense oligonucleotides technology.
    Wang Z
    Methods Mol Biol; 2011; 676():43-9. PubMed ID: 20931388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of miRNAs Bound to an RNA of Interest by MicroRNA Capture Affinity Technology (miR-CATCH).
    Zeni A; Grasso M; Denti MA
    Methods Mol Biol; 2022; 2404():207-218. PubMed ID: 34694611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging Dendrimer-Grafted Graphene Oxide Mediated Anti-miR-21 Delivery With an Activatable Luciferase Reporter.
    Wang F; Zhang B; Zhou L; Shi Y; Li Z; Xia Y; Tian J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9014-21. PubMed ID: 27010367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MiR-30a-5p antisense oligonucleotide suppresses glioma cell growth by targeting SEPT7.
    Jia Z; Wang K; Wang G; Zhang A; Pu P
    PLoS One; 2013; 8(1):e55008. PubMed ID: 23383034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense oligonucleotide against miR-21 inhibits migration and induces apoptosis in leukemic K562 cells.
    Hu H; Li Y; Gu J; Zhu X; Dong D; Yao J; Lin C; Fei J
    Leuk Lymphoma; 2010 Apr; 51(4):694-701. PubMed ID: 20141427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Antisense Oligonucleotide Drug Targeting miR-21 Induces H1650 Apoptosis and Caspase Activation.
    Ge JH; Zhu JW; Fu HY; Shi WB; Zhang CL
    Technol Cancer Res Treat; 2019; 18():1533033819892263. PubMed ID: 31818225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: A new multimodal gene therapy approach for glioblastoma.
    Costa PM; Cardoso AL; Custódia C; Cunha P; Pereira de Almeida L; Pedroso de Lima MC
    J Control Release; 2015 Jun; 207():31-9. PubMed ID: 25861727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR-CATCH: microRNA capture affinity technology.
    Vencken S; Hassan T; McElvaney NG; Smith SG; Greene CM
    Methods Mol Biol; 2015; 1218():365-73. PubMed ID: 25319664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA regulation of the synaptic plasticity-related gene Arc.
    Wibrand K; Pai B; Siripornmongcolchai T; Bittins M; Berentsen B; Ofte ML; Weigel A; Skaftnesmo KO; Bramham CR
    PLoS One; 2012; 7(7):e41688. PubMed ID: 22844515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing.
    Chang YY; Kuo WH; Hung JH; Lee CY; Lee YH; Chang YC; Lin WC; Shen CY; Huang CS; Hsieh FJ; Lai LC; Tsai MH; Chang KJ; Chuang EY
    Mol Cancer; 2015 Feb; 14():36. PubMed ID: 25888956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-CATCH Identifies Biologically Active miRNA Regulators of the Pro-Survival Gene XIAP, in Chinese Hamster Ovary Cells.
    Griffith A; Kelly PS; Vencken S; Lao NT; Greene CM; Clynes M; Barron N
    Biotechnol J; 2018 Mar; 13(3):e1700299. PubMed ID: 28976632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells.
    Qin W; Shi Y; Zhao B; Yao C; Jin L; Ma J; Jin Y
    PLoS One; 2010 Feb; 5(2):e9429. PubMed ID: 20195546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silencing microRNA by interfering nanoparticles in mice.
    Su J; Baigude H; McCarroll J; Rana TM
    Nucleic Acids Res; 2011 Mar; 39(6):e38. PubMed ID: 21212128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells.
    Shang J; Yang F; Wang Y; Wang Y; Xue G; Mei Q; Wang F; Sun S
    J Cell Biochem; 2014 Apr; 115(4):772-84. PubMed ID: 24249161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes.
    Boutla A; Delidakis C; Tabler M
    Nucleic Acids Res; 2003 Sep; 31(17):4973-80. PubMed ID: 12930946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-183/182/96 cooperatively regulates the proliferation of colon cancer cells.
    Zhang Q; Ren W; Huang B; Yi L; Zhu H
    Mol Med Rep; 2015 Jul; 12(1):668-74. PubMed ID: 25695717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-21, An Oncogenic Target miRNA for Cancer Therapy: Molecular Mechanisms and Recent Advancements in Chemo and Radio-resistance.
    Javanmardi S; Aghamaali MR; Abolmaali SS; Mohammadi S; Tamaddon AM
    Curr Gene Ther; 2017; 16(6):375-389. PubMed ID: 28042781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.