These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 30765846)

  • 1. Enhanced photocurrent production by bio-dyes of photosynthetic macromolecules on designed TiO2 film.
    Yu D; Wang M; Zhu G; Ge B; Liu S; Huang F
    Sci Rep; 2015 Mar; 5():9375. PubMed ID: 25790735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovering degraded quasi-solid-state dye-sensitized solar cells by applying electrical pulses.
    Zhang X; Huang X; Jiang H
    Phys Chem Chem Phys; 2013 May; 15(18):6864-9. PubMed ID: 23545782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of natural dye photosensitizers for dye-sensitized solar cells: a review.
    Triyanto A; Ali N; Salleh H; Setiawan J; Yatim NI
    Environ Sci Pollut Res Int; 2024 May; 31(22):31679-31690. PubMed ID: 38649606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodiesel production from the Scenedesmus sp. and utilization of pigment from de-oiled biomass as sensitizer in the dye-sensitized solar cell (DSSC) for performance enhancement.
    Kalaiselvan N; Al-Ansari MM; Mathimani T
    Environ Res; 2024 Jun; 251(Pt 2):118726. PubMed ID: 38518911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Green Approach to Natural Dyes in Dye-Sensitized Solar Cells.
    Shukor NIA; Chan KY; Thien GSH; Yeoh ME; Low PL; Devaraj NK; Ng ZN; Yap BK
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular Hemicage Cobalt Mediators for Dye-Sensitized Solar Cells.
    Freitag M; Yang W; Fredin LA; D'Amario L; Karlsson KM; Hagfeldt A; Boschloo G
    Chemphyschem; 2016 Dec; 17(23):3845-3852. PubMed ID: 27662628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Complex Comprising a Cyanine Dye Rotaxane and a Porphyrin Nanoring as a Model Light-Harvesting System.
    Pruchyathamkorn J; Kendrick WJ; Frawley AT; Mattioni A; Caycedo-Soler F; Huelga SF; Plenio MB; Anderson HL
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16455-16458. PubMed ID: 32558120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased solar-driven chemical transformations through surface-induced benzoperylene aggregation in dye-sensitized photoanodes.
    Bruggeman DF; Detz RJ; Mathew S; Reek JNH
    Photochem Photobiol Sci; 2024 Mar; 23(3):503-516. PubMed ID: 38363531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Nano-Biohybrid-Based Bio-Solar Cell to Regulate the Electrical Signal Transmission to Living Cells for Biomedical Application.
    Lim J; Shin M; Ha T; Su WW; Yoon J; Choi JW
    Adv Mater; 2023 Oct; 35(41):e2303125. PubMed ID: 37435979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry, reactivity descriptors, light harvesting efficiency, molecular radii, diffusion coefficient, and oxidation potential of RE(I)(CO)
    Tegegn DF; Belachew HZ; Wirtu SF; Salau AO
    BMC Chem; 2024 Jun; 18(1):110. PubMed ID: 38858734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems.
    Kim YJ; Hong H; Yun J; Kim SI; Jung HY; Ryu W
    Adv Mater; 2021 Nov; 33(47):e2005919. PubMed ID: 33236450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic model for redox-active film based biophotoelectrodes.
    Buesen D; Hoefer T; Zhang H; Plumeré N
    Faraday Discuss; 2019 Jul; 215(0):39-53. PubMed ID: 30982836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Biophotocurrent Generation in Living Photosynthetic Optical Resonator.
    Roxby DN; Yuan Z; Krishnamoorthy S; Wu P; Tu WC; Chang GE; Lau R; Chen YC
    Adv Sci (Weinh); 2020 Jun; 7(11):1903707. PubMed ID: 32537412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The coupled photocycle of phenyl-p-benzoquinone and Light-Harvesting Complex II (LHCII) within the biohybrid system.
    Łazicka M; Palińska-Saadi A; Piotrowska P; Paterczyk B; Mazur R; Maj-Żurawska M; Garstka M
    Sci Rep; 2022 Jul; 12(1):12771. PubMed ID: 35896789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis.
    Weliwatte NS; Grattieri M; Minteer SD
    Photochem Photobiol Sci; 2021 Oct; 20(10):1333-1356. PubMed ID: 34550560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Photo-Electrochemical Hybrid Devices Based on Graphene and Chlamydomonas reinhardtii Light-Harvesting Proteins.
    Ortiz-Torres MI; Fernández-Niño M; Cruz JC; Capasso A; Matteocci F; Patiño EJ; Hernández Y; González Barrios AF
    Sci Rep; 2020 Feb; 10(1):3376. PubMed ID: 32099058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins.
    Lämmermann N; Schmid-Michels F; Weißmann A; Wobbe L; Hütten A; Kruse O
    Sci Rep; 2019 Feb; 9(1):2109. PubMed ID: 30765846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light harvesting and photocurrent generation by nanostructured photoelectrodes sensitized with a photosynthetic pigment: a new application for microalgae.
    Mohammadpour R; Janfaza S; Abbaspour-Aghdam F
    Bioresour Technol; 2014 Jul; 163():1-5. PubMed ID: 24768904
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.