These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 3076606)
1. The deafferented visual cortex and interhemispheric relationships: a physiological approach. Yinon U; Podell M Metab Pediatr Syst Ophthalmol (1985); 1988; 11(1-2):100-10. PubMed ID: 3076606 [TBL] [Abstract][Full Text] [Related]
2. Properties of visual cortical cells of the intact and the deafferented hemisphere of unilateral optic tract sectioned acute and chronic adult cats. Podell M; Yinon U; Hammer A Exp Brain Res; 1984; 55(1):91-6. PubMed ID: 6086374 [TBL] [Abstract][Full Text] [Related]
3. Unilateral interruption of geniculate and callosal inputs to the visual cortex of cats: ocular dominance and responsiveness of cells in the deafferented and in the intact hemispheres. Yinon U; Achiron A Exp Neurol; 1988 Mar; 99(3):579-88. PubMed ID: 3342840 [TBL] [Abstract][Full Text] [Related]
4. Unilateral visual cortex deafferentation induces changes in receptive field properties of cortical cells in the intact hemisphere of normal and of monocularly deprived cats. Yinon U; Podell M Brain Res; 1987 Jun; 430(2):205-13. PubMed ID: 3607513 [TBL] [Abstract][Full Text] [Related]
5. Deafferentation of the visual cortex: the effect on cortical cells in normal and in early monocularly deprived cats. Yinon U; Podell M; Goshen S Exp Neurol; 1984 Mar; 83(3):486-94. PubMed ID: 6698154 [TBL] [Abstract][Full Text] [Related]
6. Importance of corpus callosum for visual receptive fields of single neurons in cat superior colliculus. Antonini A; Berlucchi G; Marzi CA; Sprague JM J Neurophysiol; 1979 Jan; 42(1 Pt 1):137-52. PubMed ID: 430108 [TBL] [Abstract][Full Text] [Related]
7. The ocular dominance and receptive field properties of visual cortex cells of cats following long-term transection of the optic chiasm and monocular deprivation during adulthood. Yinon U; Milgram A Behav Brain Res; 1990 May; 38(2):163-73. PubMed ID: 2363836 [TBL] [Abstract][Full Text] [Related]
8. Visual hemispheric dominance induced in split brain cats during development: a model of deficient interhemispheric transfer derived from physiological evidence in single visual cortex cells. Yinon U Behav Brain Res; 1994 Oct; 64(1-2):97-110. PubMed ID: 7840897 [TBL] [Abstract][Full Text] [Related]
9. Split brain acutely and chronically induced in cats causes ipsilateral eye dominance and reduced excitability of cells in the visual cortex. Yinon U; Chen M Metab Pediatr Syst Ophthalmol (1985); 1988; 11(1-2):86-96. PubMed ID: 3255877 [TBL] [Abstract][Full Text] [Related]
10. Post-critical period plasticity of callosal transfer to visual cortex cells of cats following early conditioning of monocular deprivation and late optic chiasm transection. Yinon U; Hammer A Brain Res; 1990 May; 516(1):84-90. PubMed ID: 2364285 [TBL] [Abstract][Full Text] [Related]
11. Abnormal interhemispheric connections in the visual system of Boston Siamese cats: a physiological study. Shatz C J Comp Neurol; 1977 Jan; 171(2):229-45. PubMed ID: 833349 [TBL] [Abstract][Full Text] [Related]
12. Visual interhemispheric transfer to areas 17 and 18 in cats with convergent strabismus. Milleret C; Houzel JC Eur J Neurosci; 2001 Jan; 13(1):137-52. PubMed ID: 11135012 [TBL] [Abstract][Full Text] [Related]
13. Visual receptive field properties of cells innervated through the corpus callosum in the cat. Lepore F; Guillemot JP Exp Brain Res; 1982; 46(3):413-24. PubMed ID: 7095047 [TBL] [Abstract][Full Text] [Related]
14. Behavioral and electrophysiological effects of unilateral optic tract section in ordinary and Siamese cats. Antonini A; Berlucchi G; Marzi CA; Sprague JM J Comp Neurol; 1979 May; 185(1):183-202. PubMed ID: 429613 [TBL] [Abstract][Full Text] [Related]
15. Interhemispheric influences on area 19 of the cat. Antonini A; Di Stefano M; Minciacchi D; Tassinari G Exp Brain Res; 1985; 59(1):171-84. PubMed ID: 4018195 [TBL] [Abstract][Full Text] [Related]
16. Pattern of development of the callosal transfer of visual information to cortical areas 17 and 18 in the cat. Milleret C; Houzel JC; Buser P Eur J Neurosci; 1994 Feb; 6(2):193-202. PubMed ID: 8167841 [TBL] [Abstract][Full Text] [Related]
17. Cortical cells' physiology following visual split brain in developing cats. Yinon U; Chen M; Milgram A; Gelerstein S Brain Res Bull; 1991 Nov; 27(5):553-71. PubMed ID: 1756374 [TBL] [Abstract][Full Text] [Related]
18. Postcritical-period reversal of effects of monocular deprivation on striate cortex cells in the cat. Kratz KE; Spear PD J Neurophysiol; 1976 May; 39(3):501-11. PubMed ID: 948005 [TBL] [Abstract][Full Text] [Related]
19. Effects on binocular activation of cells in visual cortex of the cat following the transection of the optic tract. Lepore F; Samson A; Molotchnikoff S Exp Brain Res; 1983; 50(2-3):392-6. PubMed ID: 6641873 [TBL] [Abstract][Full Text] [Related]
20. Effects of corpus callosum section on functional compensation in the posteromedial lateral suprasylvian visual area after early visual cortex damage in cats. Tong L; Spear PD; Kalil RE J Comp Neurol; 1987 Feb; 256(1):128-36. PubMed ID: 3819035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]