These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30766726)

  • 1. Modulating CRISPR gene drive activity through nucleocytoplasmic localization of Cas9 in
    Goeckel ME; Basgall EM; Lewis IC; Goetting SC; Yan Y; Halloran M; Finnigan GC
    Fungal Biol Biotechnol; 2019; 6():2. PubMed ID: 30766726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning CRISPR-Cas9 Gene Drives in
    Roggenkamp E; Giersch RM; Schrock MN; Turnquist E; Halloran M; Finnigan GC
    G3 (Bethesda); 2018 Mar; 8(3):999-1018. PubMed ID: 29348295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.
    Basgall EM; Goetting SC; Goeckel ME; Giersch RM; Roggenkamp E; Schrock MN; Halloran M; Finnigan GC
    Microbiology (Reading); 2018 Apr; 164(4):464-474. PubMed ID: 29488867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a multi-locus CRISPR gene drive system in budding yeast.
    Yan Y; Finnigan GC
    Sci Rep; 2018 Nov; 8(1):17277. PubMed ID: 30467400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of CRISPR gene drive design in budding yeast.
    Yan Y; Finnigan GC
    Access Microbiol; 2019; 1(9):e000059. PubMed ID: 32974560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of self-contained CRISPR gene drive reversal systems.
    Heffel MG; Finnigan GC
    Sci Rep; 2019 Dec; 9(1):20050. PubMed ID: 31882576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of a Cas12a-based gene-drive system in budding yeast.
    Lewis IC; Yan Y; Finnigan GC
    Access Microbiol; 2021; 3(12):000301. PubMed ID: 35024561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene drives in our future: challenges of and opportunities for using a self-sustaining technology in pest and vector management.
    Collins JP
    BMC Proc; 2018; 12(Suppl 8):9. PubMed ID: 30079101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains.
    Roggenkamp E; Giersch RM; Wedeman E; Eaton M; Turnquist E; Schrock MN; Alkotami L; Jirakittisonthon T; Schluter-Pascua SE; Bayne GH; Wasko C; Halloran M; Finnigan GC
    Front Microbiol; 2017; 8():1773. PubMed ID: 28979241
    [No Abstract]   [Full Text] [Related]  

  • 12. Applications of CRISPR/Cas gene-editing technology in yeast and fungi.
    Liao B; Chen X; Zhou X; Zhou Y; Shi Y; Ye X; Liao M; Zhou Z; Cheng L; Ren B
    Arch Microbiol; 2021 Dec; 204(1):79. PubMed ID: 34954815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 Gene Editing in Yeast: A Molecular Biology and Bioinformatics Laboratory Module for Undergraduate and High School Students.
    Sankaran SM; Smith JD; Roy KR
    J Microbiol Biol Educ; 2021; 22(2):. PubMed ID: 34594460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safeguarding CRISPR-Cas9 gene drives in yeast.
    DiCarlo JE; Chavez A; Dietz SL; Esvelt KM; Church GM
    Nat Biotechnol; 2015 Dec; 33(12):1250-1255. PubMed ID: 26571100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Editing in Clinical Practice: Where are We?
    Mittal RD
    Indian J Clin Biochem; 2019 Jan; 34(1):19-25. PubMed ID: 30728669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A glance at genome editing with CRISPR-Cas9 technology.
    Barman A; Deb B; Chakraborty S
    Curr Genet; 2020 Jun; 66(3):447-462. PubMed ID: 31691023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress and Challenges: Development and Implementation of CRISPR/Cas9 Technology in Filamentous Fungi.
    Wang Q; Coleman JJ
    Comput Struct Biotechnol J; 2019; 17():761-769. PubMed ID: 31312414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Investigation of the Effects of Multiple SV40 Nuclear Localization Signal Fusion on the Genome Editing Activity of Purified SpCas9.
    Shui S; Wang S; Liu J
    Bioengineering (Basel); 2022 Feb; 9(2):. PubMed ID: 35200436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-generation CRISPR gene-drive systems using Cas12a nuclease.
    Sanz Juste S; Okamoto EM; Nguyen C; Feng X; López Del Amo V
    Nat Commun; 2023 Oct; 14(1):6388. PubMed ID: 37821497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 gene drive technology to control transmission of vector-borne parasitic infections.
    Nateghi Rostami M
    Parasite Immunol; 2020 Sep; 42(9):e12762. PubMed ID: 32497313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.