These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 30767099)
1. Biodegradation Assessment of Poly (Lactic Acid) Filled with Functionalized Titania Nanoparticles (PLA/TiO Luo Y; Lin Z; Guo G Nanoscale Res Lett; 2019 Feb; 14(1):56. PubMed ID: 30767099 [TBL] [Abstract][Full Text] [Related]
2. Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites. Valapa RB; G P; Katiyar V Int J Biol Macromol; 2016 Aug; 89():70-80. PubMed ID: 27095433 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and Design of Norfloxacin drug delivery system based on PLA/TiO Salahuddin N; Abdelwahab M; Gaber M; Elneanaey S Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110337. PubMed ID: 31923987 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation of Poly(Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. Brdlík P; Borůvka M; Běhálek L; Lenfeld P Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669420 [TBL] [Abstract][Full Text] [Related]
5. Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Musioł M; Sikorska W; Adamus G; Janeczek H; Richert J; Malinowski R; Jiang G; Kowalczuk M Waste Manag; 2016 Jun; 52():69-76. PubMed ID: 27103398 [TBL] [Abstract][Full Text] [Related]
6. Poly(lactic acid)/TiO₂ nanocomposites as alternative biocidal and antifungal materials. Fonseca C; Ochoa A; Ulloa MT; Alvarez E; Canales D; Zapata PA Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():314-20. PubMed ID: 26354270 [TBL] [Abstract][Full Text] [Related]
7. Structural changes and nano-TiO Yang C; Zhu B; Wang J; Qin Y Int J Biol Macromol; 2019 Oct; 139():85-93. PubMed ID: 31369783 [TBL] [Abstract][Full Text] [Related]
8. Accelerating Biodegradation: Enhancing Poly(lactic acid) Breakdown at Mesophilic Environmental Conditions with Biostimulants. Mayekar PC; Auras R Macromol Rapid Commun; 2024 Apr; 45(7):e2300641. PubMed ID: 38206571 [TBL] [Abstract][Full Text] [Related]
9. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions. Kalita NK; Bhasney SM; Mudenur C; Kalamdhad A; Katiyar V Chemosphere; 2020 May; 247():125875. PubMed ID: 32069712 [TBL] [Abstract][Full Text] [Related]
10. Effect of Nano-Clay and Surfactant on the Biodegradation of Poly(Lactic Acid) Films. Mayekar PC; Castro-Aguirre E; Auras R; Selke S; Narayan R Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32028695 [TBL] [Abstract][Full Text] [Related]
12. The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions. Brdlík P; Novák J; Borůvka M; Běhálek L; Lenfeld P Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616489 [TBL] [Abstract][Full Text] [Related]
13. Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites. Castro-Aguirre E; Auras R; Selke S; Rubino M; Marsh T Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966238 [TBL] [Abstract][Full Text] [Related]
14. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Stloukal P; Pekařová S; Kalendova A; Mattausch H; Laske S; Holzer C; Chitu L; Bodner S; Maier G; Slouf M; Koutny M Waste Manag; 2015 Aug; 42():31-40. PubMed ID: 25981155 [TBL] [Abstract][Full Text] [Related]
15. Degradation of Polylactic Acid Using Sub-Critical Water for Compost. Goto T; Kishita M; Sun Y; Sako T; Okajima I Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33105577 [TBL] [Abstract][Full Text] [Related]
16. Biodegradation assessment of PLA and its nanocomposites. Araújo A; Oliveira M; Oliveira R; Botelho G; Machado AV Environ Sci Pollut Res Int; 2014; 21(16):9477-86. PubMed ID: 24222440 [TBL] [Abstract][Full Text] [Related]
17. Promoting Interfacial Interactions with the Addition of Lignin in Poly(Lactic Acid) Hybrid Nanocomposites. Patanair B; Saiter-Fourcin A; Thomas S; Thomas MG; Parathukkamparambil Pundarikashan P; Gopalan Nair K; Kumar VK; Maria HJ; Delpouve N Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33467623 [TBL] [Abstract][Full Text] [Related]
18. Degradation Behavior of Biodegradable Man-Made Fibers in Natural Soil and in Compost. Borelbach P; Kopitzky R; Dahringer J; Gutmann P Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447604 [TBL] [Abstract][Full Text] [Related]
19. Ulomoides dermestoides Coleopteran action on Thermoplastic Starch/Poly(lactic acid) films biodegradation: a novel, challenging and sustainable approach for a fast mineralization process. Salazar-Sánchez MDR; Immirzi B; Solanilla-Duque JF; Zannini D; Malinconico M; Santagata G Carbohydr Polym; 2022 Mar; 279():118989. PubMed ID: 34980348 [TBL] [Abstract][Full Text] [Related]
20. Soil burial-induced chemical and thermal changes in starch/poly (lactic acid) composites. Lv S; Zhang Y; Gu J; Tan H Int J Biol Macromol; 2018 Jul; 113():338-344. PubMed ID: 29481951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]