BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30767107)

  • 1. Multiple sgRNAs facilitate base editing-mediated i-stop to induce complete and precise gene disruption.
    Jia K; Lu Z; Zhou F; Xiong Z; Zhang R; Liu Z; Ma Y; He L; Li C; Zhu Z; Pan D; Lian Z
    Protein Cell; 2019 Nov; 10(11):832-839. PubMed ID: 30767107
    [No Abstract]   [Full Text] [Related]  

  • 2. Designing Guide-RNA for Generating Premature Stop Codons for Gene Knockout Using CRISPR-BETS.
    Wu Y; Zhang T
    Methods Mol Biol; 2023; 2653():95-105. PubMed ID: 36995621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guide RNAs: it's good to be choosy.
    Marx V
    Nat Methods; 2020 Dec; 17(12):1179-1182. PubMed ID: 33154568
    [No Abstract]   [Full Text] [Related]  

  • 4. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs.
    Zuo E; Cai YJ; Li K; Wei Y; Wang BA; Sun Y; Liu Z; Liu J; Hu X; Wei W; Huo X; Shi L; Tang C; Liang D; Wang Y; Nie YH; Zhang CC; Yao X; Wang X; Zhou C; Ying W; Wang Q; Chen RC; Shen Q; Xu GL; Li J; Sun Q; Xiong ZQ; Yang H
    Cell Res; 2017 Jul; 27(7):933-945. PubMed ID: 28585534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Acsl4 Gene Knockout Mouse Model by CRISPR/Cas9-Mediated Genome Engineering.
    Ren H; Hua Z; Meng J; Molenaar A; Bi Y; Cheng N; Zheng X
    Crit Rev Biomed Eng; 2019; 47(5):419-426. PubMed ID: 32422031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.
    Tang YD; Guo JC; Wang TY; Zhao K; Liu JT; Gao JC; Tian ZJ; An TQ; Cai XH
    FASEB J; 2018 Aug; 32(8):4293-4301. PubMed ID: 29509513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reporter does CRISPR.
    Cohen J
    Science; 2016 Nov; 354(6312):541. PubMed ID: 27811249
    [No Abstract]   [Full Text] [Related]  

  • 8. Pipeline for the generation of gene knockout mice using dual sgRNA CRISPR/Cas9-mediated gene editing.
    Ghassemi B; Shamsara M; Soleimani M; Kiani J; Rassoulzadegan M
    Anal Biochem; 2019 Mar; 568():31-40. PubMed ID: 30593779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Editing of Mouse Embryonic and Epiblast Stem Cells.
    Sibbritt T; Osteil P; Fan X; Sun J; Salehin N; Knowles H; Shen J; Tam PPL
    Methods Mol Biol; 2019; 1940():77-95. PubMed ID: 30788819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology.
    Liu DY; Qiu T; Ding XH; Li M; Zhu MY; Wang JH
    Yi Chuan; 2016 Aug; 38(8):756-64. PubMed ID: 27531614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unpredicted central inversion in a sgRNA flanked by inverted repeats.
    Wang G; Sukumar S
    Mol Biol Rep; 2020 Aug; 47(8):6375-6378. PubMed ID: 32424520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized protocol for gene editing in adipocytes using CRISPR-Cas9 technology.
    Qiu Y; Ding Q
    STAR Protoc; 2021 Mar; 2(1):100307. PubMed ID: 33554142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons.
    Billon P; Bryant EE; Joseph SA; Nambiar TS; Hayward SB; Rothstein R; Ciccia A
    Mol Cell; 2017 Sep; 67(6):1068-1079.e4. PubMed ID: 28890334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-based engineering of gene knockout cells by homology-directed insertion in polyploid Drosophila S2R+ cells.
    Xia B; Amador G; Viswanatha R; Zirin J; Mohr SE; Perrimon N
    Nat Protoc; 2020 Oct; 15(10):3478-3498. PubMed ID: 32958931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Tandem Guide RNA-Based Strategy for Efficient CRISPR Gene Editing of Cell Populations with Low Heterogeneity of Edited Alleles.
    Joberty G; Fälth-Savitski M; Paulmann M; Bösche M; Doce C; Cheng AT; Drewes G; Grandi P
    CRISPR J; 2020 Apr; 3(2):123-134. PubMed ID: 32315231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes.
    Chen S; Lee B; Lee AY; Modzelewski AJ; He L
    J Biol Chem; 2016 Jul; 291(28):14457-67. PubMed ID: 27151215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different Effects of sgRNA Length on CRISPR-mediated Gene Knockout Efficiency.
    Zhang JP; Li XL; Neises A; Chen W; Hu LP; Ji GZ; Yu JY; Xu J; Yuan WP; Cheng T; Zhang XB
    Sci Rep; 2016 Jun; 6():28566. PubMed ID: 27338021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Knockout in Hematopoietic Stem and Progenitor Cells Followed by Granulocytic Differentiation.
    Mir P; Ritter M; Welte K; Skokowa J; Klimiankou M
    Methods Mol Biol; 2020; 2115():455-469. PubMed ID: 32006417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants.
    Burle-Caldas GA; Soares-Simões M; Lemos-Pechnicki L; DaRocha WD; Teixeira SMR
    Int J Parasitol; 2018 Jul; 48(8):591-596. PubMed ID: 29577891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.