These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 30767241)
1. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency. Crowther LM; Mathis D; Poms M; Plecko B J Inherit Metab Dis; 2019 Jul; 42(4):620-628. PubMed ID: 30767241 [TBL] [Abstract][Full Text] [Related]
2. Mouse lysine catabolism to aminoadipate occurs primarily through the saccharopine pathway; implications for pyridoxine dependent epilepsy (PDE). Pena IA; Marques LA; Laranjeira ÂB; Yunes JA; Eberlin MN; MacKenzie A; Arruda P Biochim Biophys Acta Mol Basis Dis; 2017 Jan; 1863(1):121-128. PubMed ID: 27615426 [TBL] [Abstract][Full Text] [Related]
3. Inherited Disorders of Lysine Metabolism: A Review. Bouchereau J; Schiff M J Nutr; 2020 Oct; 150(Suppl 1):2556S-2560S. PubMed ID: 33000154 [TBL] [Abstract][Full Text] [Related]
4. Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. Struys EA; Jakobs C FEBS Lett; 2010 Jan; 584(1):181-6. PubMed ID: 19932104 [TBL] [Abstract][Full Text] [Related]
5. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Stockler S; Plecko B; Gospe SM; Coulter-Mackie M; Connolly M; van Karnebeek C; Mercimek-Mahmutoglu S; Hartmann H; Scharer G; Struijs E; Tein I; Jakobs C; Clayton P; Van Hove JL Mol Genet Metab; 2011; 104(1-2):48-60. PubMed ID: 21704546 [TBL] [Abstract][Full Text] [Related]
6. Lysine restricted diet for pyridoxine-dependent epilepsy: first evidence and future trials. van Karnebeek CD; Hartmann H; Jaggumantri S; Bok LA; Cheng B; Connolly M; Coughlin CR; Das AM; Gospe SM; Jakobs C; van der Lee JH; Mercimek-Mahmutoglu S; Meyer U; Struys E; Sinclair G; Van Hove J; Collet JP; Plecko BR; Stockler S Mol Genet Metab; 2012 Nov; 107(3):335-44. PubMed ID: 23022070 [TBL] [Abstract][Full Text] [Related]
7. Metabolomics analysis of antiquitin deficiency in cultured human cells and plasma: Relevance to pyridoxine-dependent epilepsy. Crowther LM; Poms M; Zandl-Lang M; Abela L; Hartmann H; Seiler M; Mathis D; Plecko B J Inherit Metab Dis; 2023 Jan; 46(1):129-142. PubMed ID: 36225138 [TBL] [Abstract][Full Text] [Related]
8. The measurement of urinary Δ¹-piperideine-6-carboxylate, the alter ego of α-aminoadipic semialdehyde, in Antiquitin deficiency. Struys EA; Bok LA; Emal D; Houterman S; Willemsen MA; Jakobs C J Inherit Metab Dis; 2012 Sep; 35(5):909-16. PubMed ID: 22249334 [TBL] [Abstract][Full Text] [Related]
9. Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis. Kinzel JJ; Bhattacharjee JK J Bacteriol; 1979 May; 138(2):410-7. PubMed ID: 571433 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous quantification of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate, pipecolic acid and alpha-aminoadipic acid in pyridoxine-dependent epilepsy. Xue J; Wang J; Gong P; Wu M; Yang W; Jiang S; Wu Y; Jiang Y; Zhang Y; Yuzyuk T; Li H; Yang Z Sci Rep; 2019 Aug; 9(1):11371. PubMed ID: 31388081 [TBL] [Abstract][Full Text] [Related]
11. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy. Yuzyuk T; Thomas A; Viau K; Liu A; De Biase I; Botto LD; Pasquali M; Longo N Mol Genet Metab; 2016 Jul; 118(3):167-172. PubMed ID: 27324284 [TBL] [Abstract][Full Text] [Related]
13. The saccharopine pathway in seed development and stress response of maize. Kiyota E; Pena IA; Arruda P Plant Cell Environ; 2015 Nov; 38(11):2450-61. PubMed ID: 25929294 [TBL] [Abstract][Full Text] [Related]
14. Catabolism of lysine in Penicillium chrysogenum leads to formation of 2-aminoadipic acid, a precursor of penicillin biosynthesis. Esmahan C; Alvarez E; Montenegro E; Martin JF Appl Environ Microbiol; 1994 Jun; 60(6):1705-10. PubMed ID: 8031073 [TBL] [Abstract][Full Text] [Related]
15. Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Sauer SW; Opp S; Hoffmann GF; Koeller DM; Okun JG; Kölker S Brain; 2011 Jan; 134(Pt 1):157-70. PubMed ID: 20923787 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous determination of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate and pipecolic acid by LC-MS/MS for pyridoxine-dependent seizures and folinic acid-responsive seizures. Sadilkova K; Gospe SM; Hahn SH J Neurosci Methods; 2009 Oct; 184(1):136-41. PubMed ID: 19631689 [TBL] [Abstract][Full Text] [Related]
17. Condensation of delta-1-piperideine-6-carboxylate with ortho-aminobenzaldehyde allows its simple, fast, and inexpensive quantification in the urine of patients with antiquitin deficiency. Boehm T; Hubmann H; Petroczi K; Mathis D; Klavins K; Fauler G; Plecko B; Struys E; Jilma B J Inherit Metab Dis; 2020 Jul; 43(4):891-900. PubMed ID: 31930735 [TBL] [Abstract][Full Text] [Related]
18. Enzymes responsible for the conversion of N alpha-[(Benzyloxy)carbonyl]-D-lysine to N alpha-[(Benzyloxy)carbonyl]-D-aminoadipic acid by Rhodococcus sp. AIU Z-35-1. Isobe K; Fukuda N; Nagasawa S; Saitou K Chem Biodivers; 2010 Jun; 7(6):1549-54. PubMed ID: 20564569 [TBL] [Abstract][Full Text] [Related]
19. Normal plasma pipecolic acid level in pyridoxine dependent epilepsy due to ALDH7A1 mutations. Mercimek-Mahmutoglu S; Donner EJ; Siriwardena K Mol Genet Metab; 2013; 110(1-2):197. PubMed ID: 23683770 [No Abstract] [Full Text] [Related]
20. Folinic acid-responsive seizures are identical to pyridoxine-dependent epilepsy. Gallagher RC; Van Hove JL; Scharer G; Hyland K; Plecko B; Waters PJ; Mercimek-Mahmutoglu S; Stockler-Ipsiroglu S; Salomons GS; Rosenberg EH; Struys EA; Jakobs C Ann Neurol; 2009 May; 65(5):550-6. PubMed ID: 19142996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]