BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30767512)

  • 1. Rhombohedral Potassium-Zinc Hexacyanoferrate as a Cathode Material for Nonaqueous Potassium-Ion Batteries.
    Heo JW; Chae MS; Hyoung J; Hong ST
    Inorg Chem; 2019 Mar; 58(5):3065-3072. PubMed ID: 30767512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Mechanism of the Improved Operation Voltage of Rhombohedral Nickel Hexacyanoferrate as Cathodes for Sodium-Ion Batteries.
    Ji Z; Han B; Liang H; Zhou C; Gao Q; Xia K; Wu J
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33619-33625. PubMed ID: 27960427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Cost K
    Pei Y; Mu C; Li H; Li F; Chen J
    ChemSusChem; 2018 Apr; 11(8):1285-1289. PubMed ID: 29498226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries.
    Zhou Q; Liu HK; Dou SX; Chong S
    ACS Nano; 2024 Mar; 18(9):7287-7297. PubMed ID: 38373205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interior-Confined Vacancy in Potassium Manganese Hexacyanoferrate for Ultra-Stable Potassium-Ion Batteries.
    Li X; Guo T; Shang Y; Zheng T; Jia B; Niu X; Zhu Y; Wang Z
    Adv Mater; 2024 Apr; 36(15):e2310428. PubMed ID: 38230871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via In Situ Polymerization Coating.
    Xue Q; Li L; Huang Y; Huang R; Wu F; Chen R
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22339-22345. PubMed ID: 31149796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Birnessite Nanosheet Arrays with High K Content as a High-Capacity and Ultrastable Cathode for K-Ion Batteries.
    Lin B; Zhu X; Fang L; Liu X; Li S; Zhai T; Xue L; Guo Q; Xu J; Xia H
    Adv Mater; 2019 Jun; 31(24):e1900060. PubMed ID: 31045288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilayered Potassium Vanadate K
    Baddour-Hadjean R; Thanh Nguyen Huynh L; Batyrbekuly D; Bach S; Pereira-Ramos JP
    ChemSusChem; 2019 Dec; 12(23):5192-5198. PubMed ID: 31595706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Porous Network of Bismuth Used as the Anode Material for High-Energy-Density Potassium-Ion Batteries.
    Lei K; Wang C; Liu L; Luo Y; Mu C; Li F; Chen J
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4687-4691. PubMed ID: 29488300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat-Resistant Carbon-Coated Potassium Magnesium Hexacyanoferrate Nanoplates for High-Performance Potassium-Ion Batteries.
    Liao J; Yuan Z; Hu Q; Sheng X; Song L; Xu Y; Du Y; Zhou X
    Angew Chem Int Ed Engl; 2024 Jun; ():e202409145. PubMed ID: 38869085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Voltage Potassium Hexacyanoferrate Cathode via High-Entropy and Potassium Incorporation for Stable Sodium-Ion Batteries.
    Dai J; Tan S; Wang L; Ling F; Duan F; Ma M; Shao Y; Rui X; Yao Y; Hu E; Wu X; Li C; Yu Y
    ACS Nano; 2023 Nov; 17(21):20949-20961. PubMed ID: 37906735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Structural Evolution and Lattice Water Movement for Rhombohedral Nickel Hexacyanoferrate upon Sodium Migration.
    Xie B; Wang L; Shu J; Zhou X; Yu Z; Huo H; Ma Y; Cheng X; Yin G; Zuo P
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46705-46713. PubMed ID: 31750646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-, Water-, and Defect-Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Low-Cost Sodium-Ion Batteries.
    Zhou A; Xu Z; Gao H; Xue L; Li J; Goodenough JB
    Small; 2019 Oct; 15(42):e1902420. PubMed ID: 31469502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Fe-Substituted Hexacyanoferrate for High-Performance Aqueous Potassium Ion Batteries.
    Ali U; Liu B; Jia H; Li Y; Li Y; Hao Y; Zhang L; Xing S; Li L; Wang C
    Small; 2024 Jan; 20(4):e2305866. PubMed ID: 37712131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Gradient Concentration Prussian White Cathodes for High-Performance Potassium-Ion Batteries.
    Chen X; Hua C; Zhang K; Sun H; Hu S; Jian Z
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47125-47134. PubMed ID: 37756438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reticular V
    Tian B; Tang W; Su C; Li Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):642-650. PubMed ID: 29256595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Exchange Reaction Mechanism and the Role of Additive Water to Stabilize the Structure of VOPO
    Hyoung J; Heo JW; Chae MS; Hong ST
    ChemSusChem; 2019 Mar; 12(5):1069-1075. PubMed ID: 30577084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.
    Shen W; Wang C; Liu H; Yang W
    Chemistry; 2013 Oct; 19(43):14712-8. PubMed ID: 24014393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cycling Stability of Layered Potassium Manganese Oxide in Nonaqueous Potassium Cells.
    Cho MK; Jo JH; Choi JU; Myung ST
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27770-27779. PubMed ID: 31310502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries.
    Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.