These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30767526)

  • 1. Interfacial Water Features at Air-Water Interfaces as Influenced by Charged Surfactants.
    Truong VNT; Wang X; Dang LX; Miller JD
    J Phys Chem B; 2019 Mar; 123(10):2397-2404. PubMed ID: 30767526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative Effects of Zwitterionic-Ionic Surfactant Mixtures on the Interfacial Water Structure Revealed by Sum Frequency Generation Vibrational Spectroscopy.
    Pan X; Yang F; Chen S; Zhu X; Wang C
    Langmuir; 2018 May; 34(18):5273-5278. PubMed ID: 29672067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ investigation of halide co-ion effects on SDS adsorption at air-water interfaces.
    Nguyen KT; Nguyen AV
    Soft Matter; 2014 Sep; 10(34):6556-63. PubMed ID: 25036989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio Modeling of the Vibrational Sum-Frequency Generation Spectrum of Interfacial Water.
    Liang C; Jeon J; Cho M
    J Phys Chem Lett; 2019 Mar; 10(5):1153-1158. PubMed ID: 30802060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong cooperative effect of oppositely charged surfactant mixtures on their adsorption and packing at the air-water interface and interfacial water structure.
    Nguyen KT; Nguyen TD; Nguyen AV
    Langmuir; 2014 Jun; 30(24):7047-51. PubMed ID: 24905978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial water properties in the presence of surfactants.
    Tummala NR; Liu S; Argyris D; Striolo A
    Langmuir; 2015 Feb; 31(7):2084-94. PubMed ID: 25631335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of counterions on the structure and dynamics of water near a negatively charged surfactant: a theoretical vibrational sum frequency generation study.
    Malik R; Saito S; Chandra A
    Phys Chem Chem Phys; 2024 Jun; 26(24):17065-17074. PubMed ID: 38841889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Evidence of Head-to-Tail Complex Formation of SDS-DOH Mixtures Adsorbed at the Air-Water Interface as Revealed by Vibrational Sum Frequency Generation Spectroscopy and Isotope Labelling.
    Nguyen KT; Nguyen AV
    Langmuir; 2019 Apr; 35(14):4825-4833. PubMed ID: 30866624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed layers of β-lactoglobulin and SDS at air-water interfaces with tunable intermolecular interactions.
    Engelhardt K; Weichsel U; Kraft E; Segets D; Peukert W; Braunschweig B
    J Phys Chem B; 2014 Apr; 118(15):4098-105. PubMed ID: 24678897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Charged Surfactants on Interfacial Water Structure and Macroscopic Properties of the Air-Water Interface.
    Nguyen TTP; Raji F; Nguyen CV; Nguyen NN; Nguyen AV
    Chemphyschem; 2023 Dec; 24(23):e202300062. PubMed ID: 37679310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Surfactant Concentration and Hydrophobicity on the Ordering of Water at a Silica Surface.
    Shi L; McMillan JR; Yu D; Chen X; Tucker CJ; Wasserman E; Mohler C; Chen Z
    Langmuir; 2021 Sep; 37(36):10806-10817. PubMed ID: 34455791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of surfactant and nanoparticle assembly on effective interfacial tensions.
    Ma H; Luo M; Dai LL
    Phys Chem Chem Phys; 2008 Apr; 10(16):2207-13. PubMed ID: 18404227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Dec; 141(22):22D505. PubMed ID: 25494776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific Ion Effects of Dodecyl Sulfate Surfactants with Alkali Ions at the Air-Water Interface.
    Weißenborn E; Braunschweig B
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31405189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Simulations of the Short-Chain Fluorocarbon Surfactant PFH
    Jiao J; Li T; Zhang G; Xiong J; Lang X; Quan X; Cheng Y; Wei Y
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of sodium dodecyl sulfate at the hydrophobic solid/aqueous solution interface in the presence of poly(ethylene glycol): dependence upon polymer molecular weight.
    Casford MT; Davies PB; Neivandt DJ
    Langmuir; 2006 Mar; 22(7):3105-11. PubMed ID: 16548564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and vibrational spectroscopy of salt water/air interfaces: predictions from classical molecular dynamics simulations.
    Brown EC; Mucha M; Jungwirth P; Tobias DJ
    J Phys Chem B; 2005 Apr; 109(16):7934-40. PubMed ID: 16851926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of Sulfobetaine Zwitterionic Surfactants with Water on Water Surface.
    Mafi A; Hu D; Chou KC
    Langmuir; 2016 Oct; 32(42):10905-10911. PubMed ID: 27690461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Surfactants at Air/Water and Oil/Water Interfaces: A Comparison Based on Molecular Dynamics Simulations.
    Müller P; Bonthuis DJ; Miller R; Schneck E
    J Phys Chem B; 2021 Jan; 125(1):406-415. PubMed ID: 33400514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.