These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30767526)

  • 21. The dielectric function profile across the water interface through surface-specific vibrational spectroscopy and simulations.
    Chiang KY; Seki T; Yu CC; Ohto T; Hunger J; Bonn M; Nagata Y
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2204156119. PubMed ID: 36037357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppressing interfacial water signals to assist the peak assignment of the N⁺-H stretching mode in sum frequency generation vibrational spectroscopy.
    Nguyen KT; Nguyen AV
    Phys Chem Chem Phys; 2015 Nov; 17(43):28534-8. PubMed ID: 26457564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Nov; 141(18):18C502. PubMed ID: 25399167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Counterion effect on interfacial water at charged interfaces and its relevance to the Hofmeister series.
    Nihonyanagi S; Yamaguchi S; Tahara T
    J Am Chem Soc; 2014 Apr; 136(17):6155-8. PubMed ID: 24742093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of hydrogen-bond on ultrafast spectral diffusion dynamics of water at charged monolayer interfaces.
    Inoue KI; Ahmed M; Nihonyanagi S; Tahara T
    J Chem Phys; 2019 Feb; 150(5):054705. PubMed ID: 30736682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying Double-Layer Potentials at Liquid-Gas Interfaces from Vibrational Sum-Frequency Generation.
    García Rey N; Weißenborn E; Schulze-Zachau F; Gochev G; Braunschweig B
    J Phys Chem C Nanomater Interfaces; 2019 Jan; 123(2):1279-1286. PubMed ID: 30713590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation.
    Mondal JA; Nihonyanagi S; Yamaguchi S; Tahara T
    J Am Chem Soc; 2012 May; 134(18):7842-50. PubMed ID: 22533664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competition between DPPC and SDS at the air-aqueous interface.
    Harper KL; Allen HC
    Langmuir; 2007 Aug; 23(17):8925-31. PubMed ID: 17629307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation.
    Tang F; Ohto T; Sun S; Rouxel JR; Imoto S; Backus EHG; Mukamel S; Bonn M; Nagata Y
    Chem Rev; 2020 Apr; 120(8):3633-3667. PubMed ID: 32141737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of interfacial water on protein adsorption at cross-linked polyethylene oxide interfaces.
    Leung BO; Yang Z; Wu SS; Chou KC
    Langmuir; 2012 Apr; 28(13):5724-8. PubMed ID: 22390193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competition of hydrophobic steroids with sodium dodecyl sulfate, dodecyltrimethylammonium bromide, or dodecyl β-D-maltoside for the dodecane/water interface.
    Feng S; Bummer PM
    Langmuir; 2012 Dec; 28(49):16927-32. PubMed ID: 23151278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Air-liquid interfaces of aqueous solutions containing ammonium and sulfate: spectroscopic and molecular dynamics studies.
    Gopalakrishnan S; Jungwirth P; Tobias DJ; Allen HC
    J Phys Chem B; 2005 May; 109(18):8861-72. PubMed ID: 16852054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy.
    Ding B; Jasensky J; Li Y; Chen Z
    Acc Chem Res; 2016 Jun; 49(6):1149-57. PubMed ID: 27188920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Surfactants on the Molecular Structure of the Buried Oil/Water Interface.
    Hosseinpour S; Götz V; Peukert W
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25143-25150. PubMed ID: 34478223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the Bovine Hemoglobin Adsorption Process and its Influence on Interfacial Water Structure at the Air-Water Interface.
    Chaudhary S; Kaur H; Kaur H; Rana B; Tomar D; Jena KC
    Appl Spectrosc; 2021 Dec; 75(12):1497-1509. PubMed ID: 34346774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct Observation of Adsorption Morphologies of Cationic Surfactants at the Gold Metal-Liquid Interface.
    Khan MR; Singh H; Sharma S; Asetre Cimatu KL
    J Phys Chem Lett; 2020 Nov; 11(22):9901-9906. PubMed ID: 33170701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Assignment of the Vibrational Spectrum of the Water Bend at the Air/Water Interface.
    Dutta C; Benderskii AV
    J Phys Chem Lett; 2017 Feb; 8(4):801-804. PubMed ID: 28067525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing Surface Hydration and Molecular Structure of Zwitterionic and Polyacrylamide Hydrogels.
    Zhang C; Parada GA; Zhao X; Chen Z
    Langmuir; 2019 Oct; 35(41):13292-13300. PubMed ID: 31553882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface.
    Gan W; Wu D; Zhang Z; Feng RR; Wang HF
    J Chem Phys; 2006 Mar; 124(11):114705. PubMed ID: 16555908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Influence of Sodium Iodide Salt on the Interfacial Properties of Aqueous Methanol Solution by a Combined Molecular Simulation and Sum Frequency Generation Vibrational Spectroscopy Study.
    Liu J; Li X; Hou J; Li X; Lu Z
    Langmuir; 2019 May; 35(21):7050-7059. PubMed ID: 31055930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.