BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30767708)

  • 1. Cytoplasmic and periplasmic expression of recombinant shark VNAR antibody in Escherichia coli.
    Leow HC; Fischer K; Leow YC; Braet K; Cheng Q; McCarthy J
    Prep Biochem Biotechnol; 2019; 49(4):315-327. PubMed ID: 30767708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of malaria PfHRP2 specific V
    Leow CH; Fischer K; Leow CY; Braet K; Cheng Q; McCarthy J
    Malar J; 2018 Oct; 17(1):383. PubMed ID: 30355309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate quantitation for in vitro refolding of single domain antibody fragments expressed as inclusion bodies by referring the concomitant expression of a soluble form in the periplasms of Escherichia coli.
    Noguchi T; Nishida Y; Takizawa K; Cui Y; Tsutsumi K; Hamada T; Nishi Y
    J Immunol Methods; 2017 Mar; 442():1-11. PubMed ID: 27939301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70.
    Nuttall SD; Krishnan UV; Doughty L; Pearson K; Ryan MT; Hoogenraad NJ; Hattarki M; Carmichael JA; Irving RA; Hudson PJ
    Eur J Biochem; 2003 Sep; 270(17):3543-54. PubMed ID: 12919318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3.
    Cabanillas-Bernal O; Dueñas S; Ayala-Avila M; Rucavado A; Escalante T; Licea-Navarro AF
    PLoS One; 2019; 14(6):e0213394. PubMed ID: 31206542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved production of single domain antibodies with two disulfide bonds by co-expression of chaperone proteins in the Escherichia coli periplasm.
    Shriver-Lake LC; Goldman ER; Zabetakis D; Anderson GP
    J Immunol Methods; 2017 Apr; 443():64-67. PubMed ID: 28131818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoclonal antibodies for the identification and purification of vNAR domains and IgNAR immunoglobulins from the horn shark Heterodontus francisci.
    Juarez K; Dubberke G; Lugo P; Koch-Nolte F; Buck F; Haag F; Licea A
    Hybridoma (Larchmt); 2011 Aug; 30(4):323-9. PubMed ID: 21851231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and next-generation sequencing analysis of a large phage-displayed V
    Feng M; Bian H; Wu X; Fu T; Fu Y; Hong J; Fleming BD; Flajnik MF; Ho M
    Antib Ther; 2019 Jan; 2(1):1-11. PubMed ID: 30627698
    [No Abstract]   [Full Text] [Related]  

  • 9. Construction of Histidine-Enriched Shark IgNAR Variable Domain Antibody Libraries for the Isolation of pH-Sensitive vNAR Fragments.
    Könning D; Hinz S; Grzeschik J; Schröter C; Krah S; Zielonka S; Kolmar H
    Methods Mol Biol; 2018; 1827():109-127. PubMed ID: 30196494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humanization of the Shark V
    Zhang YF; Sun Y; Hong J; Ho M
    Curr Protoc; 2023 Jan; 3(1):e630. PubMed ID: 36594750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel Pfs38 protein complex on the surface of Plasmodium falciparum blood-stage merozoites.
    Paul G; Deshmukh A; Kaur I; Rathore S; Dabral S; Panda A; Singh SK; Mohmmed A; Theisen M; Malhotra P
    Malar J; 2017 Feb; 16(1):79. PubMed ID: 28202027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring shark VNAR antibody against infectious diseases using phage display technology.
    Lim HT; Kok BH; Leow CY; Leow CH
    Fish Shellfish Immunol; 2023 Sep; 140():108986. PubMed ID: 37541634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of a pH-Sensitive IgNAR Variable Domain from a Yeast-Displayed, Histidine-Doped Master Library.
    Könning D; Zielonka S; Sellmann C; Schröter C; Grzeschik J; Becker S; Kolmar H
    Mar Biotechnol (NY); 2016 Apr; 18(2):161-7. PubMed ID: 26838965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the yield of recalcitrant Nanobodies® by simple modifications to the standard protocol.
    Kariuki CK; Magez S
    Protein Expr Purif; 2021 Sep; 185():105906. PubMed ID: 33991675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraocular Penetration of a vNAR: In Vivo and In Vitro VEGF
    Camacho-Villegas TA; Mata-González MT; García-Ubbelohd W; Núñez-García L; Elosua C; Paniagua-Solis JF; Licea-Navarro AF
    Mar Drugs; 2018 Mar; 16(4):. PubMed ID: 29614715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli.
    Schlapschy M; Grimm S; Skerra A
    Protein Eng Des Sel; 2006 Aug; 19(8):385-90. PubMed ID: 16720693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Anti-TNFα VNAR Single Domain Antibodies from Whitespotted Bambooshark (
    Zhao L; Chen M; Wang X; Kang S; Xue W; Li Z
    Mar Drugs; 2022 Apr; 20(5):. PubMed ID: 35621957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human TNF cytokine neutralization with a vNAR from Heterodontus francisci shark: a potential therapeutic use.
    Camacho-Villegas T; Mata-Gonzalez T; Paniagua-Solis J; Sanchez E; Licea A
    MAbs; 2013; 5(1):80-5. PubMed ID: 23221782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview and discovery of IgNARs and generation of VNARs.
    Nuttall SD
    Methods Mol Biol; 2012; 911():27-36. PubMed ID: 22886244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. posttranslational modification of recombinant Plasmodium falciparum apical membrane antigen 1: impact on functional immune responses to a malaria vaccine candidate.
    Giersing B; Miura K; Shimp R; Wang J; Zhou H; Orcutt A; Stowers A; Saul A; Miller LH; Long C; Singh S
    Infect Immun; 2005 Jul; 73(7):3963-70. PubMed ID: 15972483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.