These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30767716)

  • 1. Decomposition of volatile organic compounds using corona discharge plasma technology.
    Du C; Gong X; Lin Y
    J Air Waste Manag Assoc; 2019 Aug; 69(8):879-899. PubMed ID: 30767716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposition of volatile organic compounds using gliding arc discharge plasma.
    Gong X; Lin Y; Li X; Wu A; Zhang H; Yan J; Du C
    J Air Waste Manag Assoc; 2020 Feb; 70(2):138-157. PubMed ID: 31815602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Plasma Catalytic Oxidation of Toluene Using Monolith CuO Foam as a Catalyst in a Wedged High Voltage Electrode Dielectric Barrier Discharge Reactor: Influence of Reaction Parameters and Byproduct Control.
    Li J; Zhang H; Ying D; Wang Y; Sun T; Jia J
    Int J Environ Res Public Health; 2019 Feb; 16(5):. PubMed ID: 30818848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor.
    Karuppiah J; Reddy EL; Reddy PM; Ramaraju B; Karvembu R; Subrahmanyam Ch
    J Hazard Mater; 2012 Oct; 237-238():283-9. PubMed ID: 22975253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air.
    Li T; Li H; Li C
    Chemosphere; 2020 Jul; 250():126338. PubMed ID: 32126329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds.
    Bo Z; Yan J; Li X; Chi Y; Cen K
    J Hazard Mater; 2009 Jul; 166(2-3):1210-6. PubMed ID: 19153003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate.
    Forbes SL; Perrault KA; Stefanuto PH; Nizio KD; Focant JF
    PLoS One; 2014; 9(11):e113681. PubMed ID: 25412504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3.
    Zhu T; Chen R; Xia N; Li X; He X; Zhao W; Carr T
    Environ Technol; 2015; 36(9-12):1405-13. PubMed ID: 25428439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion characteristics and production evaluation of styrene/o-xylene mixtures removed by DBD pretreatment.
    Jiang L; Zhu R; Mao Y; Chen J; Zhang L
    Int J Environ Res Public Health; 2015 Jan; 12(2):1334-50. PubMed ID: 25629961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modeling concept on removal of VOCs in wire-tube non-thermal plasma, considering electrical and structural factors.
    Rostami R; Moussavi G; Jafari AJ; Darbari S
    Environ Monit Assess; 2020 Apr; 192(5):280. PubMed ID: 32281026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of VOCs onto engineered carbon materials: A review.
    Zhang X; Gao B; Creamer AE; Cao C; Li Y
    J Hazard Mater; 2017 Sep; 338():102-123. PubMed ID: 28535479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor.
    Mustafa MF; Fu X; Liu Y; Abbas Y; Wang H; Lu W
    J Hazard Mater; 2018 Apr; 347():317-324. PubMed ID: 29331811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds.
    Baskaran D; Dhamodharan D; Behera US; Byun HS
    Environ Res; 2024 Jun; 251(Pt 1):118472. PubMed ID: 38452912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corona destruction: an innovative control technology for VOCs and air toxics.
    Nunez CM; Ramsey GH; Ponder WH; Abbott JH; Hamel LE; Kariher PH
    Air Waste; 1993 Feb; 43(2):242-7. PubMed ID: 15739519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effluents from MBT plants: plasma techniques for the treatment of VOCs.
    Ragazzi M; Tosi P; Rada EC; Torretta V; Schiavon M
    Waste Manag; 2014 Nov; 34(11):2400-6. PubMed ID: 25168185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: Emission factors, source profiles, and effects on regional air quality.
    Sun J; Shen Z; Zhang L; Zhang Y; Zhang T; Lei Y; Niu X; Zhang Q; Dang W; Han W; Cao J; Xu H; Liu P; Li X
    Environ Int; 2019 Dec; 133(Pt B):105252. PubMed ID: 31678907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removing volatile organic compounds in cooking fume by nano-sized TiO
    Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH
    Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application.
    Jo WK; Park KH
    Chemosphere; 2004 Nov; 57(7):555-65. PubMed ID: 15488917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds.
    Jo WK; Kim JT
    J Hazard Mater; 2009 May; 164(1):360-6. PubMed ID: 18809252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research status of volatile organic compound (VOC) removal technology and prospect of new strategies: a review.
    Li S; Lin Y; Liu G; Shi C
    Environ Sci Process Impacts; 2023 Apr; 25(4):727-740. PubMed ID: 36897314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.