These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30767716)

  • 21. Research status of volatile organic compound (VOC) removal technology and prospect of new strategies: a review.
    Li S; Lin Y; Liu G; Shi C
    Environ Sci Process Impacts; 2023 Apr; 25(4):727-740. PubMed ID: 36897314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry.
    Preis S; Klauson D; Gregor A
    J Environ Manage; 2013 Jan; 114():125-38. PubMed ID: 23238056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel insight into VOC removal performance of photocatalytic oxidation reactors.
    Mo J; Zhang Y; Yang R
    Indoor Air; 2005 Aug; 15(4):291-300. PubMed ID: 15982276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Abatement of gas-phase VOCs via dielectric barrier discharge plasmas.
    Panda P; Mahanta RK; Mohanty S; Paikaray R; Das SP
    Environ Sci Pollut Res Int; 2021 Jun; 28(22):28666-28679. PubMed ID: 33544342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decomposition efficiency and aerosol by-products of toluene, ethyl acetate and acetone using dielectric barrier discharge technique.
    Yu H; Hu W; He J; Ye Z
    Chemosphere; 2019 Dec; 237():124439. PubMed ID: 31376693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions.
    Yoshikawa M; Zhang M; Toyota K
    Microbes Environ; 2017 Sep; 32(3):188-200. PubMed ID: 28904262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile synthesis of graphitic carbon-nitride supported antimony-doped tin oxide nanocomposite and its application for the adsorption of volatile organic compounds.
    Ojha DP; Song JH; Kim HJ
    J Environ Sci (China); 2019 May; 79():35-42. PubMed ID: 30784459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Profile and source apportionment of volatile organic compounds from a complex industrial park.
    Liu Y; Xie Q; Li X; Tian F; Qiao X; Chen J; Ding W
    Environ Sci Process Impacts; 2019 Jan; 21(1):9-18. PubMed ID: 30566144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Volatile organic compounds degradation by nonthermal plasma: a review.
    He Y; Shen J; Alharbi NS; Chen C
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):32123-32152. PubMed ID: 36710313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Species and release characteristics of VOCs in furniture coating process.
    Qi Y; Shen L; Zhang J; Yao J; Lu R; Miyakoshi T
    Environ Pollut; 2019 Feb; 245():810-819. PubMed ID: 30502710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance tests of newly developed adsorption/plasma combined system for decomposition of volatile organic compounds under continuous flow condition.
    Inoue K; Okano H; Yamagata Y; Muraoka K; Teraoka Y
    J Environ Sci (China); 2011; 23(1):139-44. PubMed ID: 21476353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Volatile organic compounds (VOCs) during non-haze and haze days in Shanghai: characterization and secondary organic aerosol (SOA) formation.
    Han D; Wang Z; Cheng J; Wang Q; Chen X; Wang H
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18619-18629. PubMed ID: 28647877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of back corona discharge in a honeycomb catalyst and its application for treatment of volatile organic compounds.
    Feng F; Zheng Y; Shen X; Zheng Q; Dai S; Zhang X; Huang Y; Liu Z; Yan K
    Environ Sci Technol; 2015 Jun; 49(11):6831-7. PubMed ID: 25941906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon.
    Li MS; Wang R; Fu Kuo DT; Shih YH
    Environ Sci Process Impacts; 2017 Mar; 19(3):276-287. PubMed ID: 28165513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of volatile organic compounds in a non-thermal plasma air purifier.
    Schmid S; Jecklin MC; Zenobi R
    Chemosphere; 2010 Mar; 79(2):124-30. PubMed ID: 20167347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds.
    Cheng Y; He H; Yang C; Zeng G; Li X; Chen H; Yu G
    Biotechnol Adv; 2016 Nov; 34(6):1091-1102. PubMed ID: 27374790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-VOC biochar-effectiveness of post-treatment measures and potential health risks related to handling and storage.
    Buss W; Mašek O
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19580-9. PubMed ID: 27392624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review.
    Mu Y; Williams PT
    Chemosphere; 2022 Dec; 308(Pt 3):136481. PubMed ID: 36165927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The emission patterns of volatile organic compounds during aerobic biotreatment of municipal solid waste using continuous and intermittent aeration.
    He PJ; Tang JF; Yang N; Fang JJ; He X; Shao LM
    J Air Waste Manag Assoc; 2012 Apr; 62(4):461-70. PubMed ID: 22616288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decomposition characteristics of toluene by a corona radical shower system.
    Wu ZL; Gao X; Luo ZY; Ni MJ; Cen KF
    J Environ Sci (China); 2004; 16(4):543-7. PubMed ID: 15495952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.