These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 30767977)
1. Effective metrology and standard of the surface roughness of micro/nanoscale waveguides with confocal laser scanning microscopy. Sun D; Shang H; Jiang H Opt Lett; 2019 Feb; 44(4):747-750. PubMed ID: 30767977 [TBL] [Abstract][Full Text] [Related]
2. Investigation on roughness-induced scattering loss of small-core polymer waveguides for single-mode optical interconnect applications. Shi Y; Ma L; Zhuang Y; He Z Opt Express; 2020 Dec; 28(26):38733-38744. PubMed ID: 33379436 [TBL] [Abstract][Full Text] [Related]
3. Surface metrology and 3-dimensional confocal profiling of femtosecond laser and mechanically dissected ultrathin endothelial lamellae. Dickman MM; van Maris MP; van Marion FW; Schuchard Y; Steijger-Vermaat P; van den Biggelaar FJ; Berendschot TT; Nuijts RM Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5183-90. PubMed ID: 25074773 [TBL] [Abstract][Full Text] [Related]
4. Food surface texture measurement using reflective confocal laser scanning microscopy. Sheen S; Bao G; Cooke P J Food Sci; 2008 Jun; 73(5):E227-34. PubMed ID: 18576995 [TBL] [Abstract][Full Text] [Related]
5. Validation of three-dimensional surface characterising methods: scanning electron microscopy and confocal laser scanning microscopy. Al-Nawas B; Grotz KA; Götz H; Heinrich G; Rippin TG; Stender TE; Duschner H; Wagner W Scanning; 2001; 23(4):227-31. PubMed ID: 11534807 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of root surface microtopography following the use of four instrumentation systems by confocal microscopy and scanning electron microscopy: an in vitro study. Solís Moreno C; Santos A; Nart J; Levi P; Velásquez A; Sanz Moliner J J Periodontal Res; 2012 Oct; 47(5):608-15. PubMed ID: 22494068 [TBL] [Abstract][Full Text] [Related]
7. Waveguide sidewall roughness measurement on full wafers by SEM-based stereoscopy. Bony A; Heid A; Takakura Y; Satzke K; Meyrueis P J Microsc; 2005 Mar; 217(Pt 3):188-92. PubMed ID: 15725121 [TBL] [Abstract][Full Text] [Related]
8. Low loss high mesa optical waveguides based on InGaAsP/InP heterostructures. Choi WS; Jang JH; Yu BA; Lee YL; Zhao W; Bae JW; Adesida I J Nanosci Nanotechnol; 2006 Nov; 6(11):3562-6. PubMed ID: 17252812 [TBL] [Abstract][Full Text] [Related]
9. Precision of 655nm Confocal Laser Profilometry for 3D surface texture characterisation of natural human enamel undergoing dietary acid mediated erosive wear. Mullan F; Mylonas P; Parkinson C; Bartlett D; Austin RS Dent Mater; 2018 Mar; 34(3):531-537. PubMed ID: 29317097 [TBL] [Abstract][Full Text] [Related]
10. Comparison of four methods of surface roughness assessment of corneal stromal bed after lamellar cutting. Jumelle C; Hamri A; Egaud G; Mauclair C; Reynaud S; Dumas V; Pereira S; Garcin T; Gain P; Thuret G Biomed Opt Express; 2017 Nov; 8(11):4974-4986. PubMed ID: 29188095 [TBL] [Abstract][Full Text] [Related]
11. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry. Gontard LC; López-Castro JD; González-Rovira L; Vázquez-Martínez JM; Varela-Feria FM; Marcos M; Calvino JJ Ultramicroscopy; 2017 Jun; 177():106-114. PubMed ID: 28340394 [TBL] [Abstract][Full Text] [Related]
12. Scanning white-light interferometry as a novel technique to quantify the surface roughness of micron-sized particles for inhalation. Adi S; Adi H; Chan HK; Young PM; Traini D; Yang R; Yu A Langmuir; 2008 Oct; 24(19):11307-12. PubMed ID: 18759384 [TBL] [Abstract][Full Text] [Related]
13. A Non-Contact Measuring System for In-Situ Surface Characterization Based on Laser Confocal Microscopy. Fu S; Cheng F; Tjahjowidodo T; Zhou Y; Butler D Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30104513 [TBL] [Abstract][Full Text] [Related]
14. In vitro evaluation of the root surface microtopography following the use of two polishing systems by Confocal Microscopy (CFM) and Scanning Electron Microscope (SEM). Solís Moreno C; Sanz-Moliner JD; Pascual La Rocca A; Nart J; Santos Alemany A Oral Health Dent Manag; 2013 Dec; 12(4):243-7. PubMed ID: 24390023 [TBL] [Abstract][Full Text] [Related]
15. Quantitative assessment of root canal roughness with calcium-based hypochlorite irrigants by 3D CLSM. Oliveira JS; Raucci Neto W; Faria NS; Fernandes FS; Miranda CE; Abi Rached-Junior FJ Braz Dent J; 2014; 25(5):409-15. PubMed ID: 25517776 [TBL] [Abstract][Full Text] [Related]
16. The effect of piezoelectric ultrasonic instrumentation on titanium discs: a microscopy and trace elemental analysis in vitro study. Tawse-Smith A; Atieh MA; Tompkins G; Duncan WJ; Reid MR; Stirling CH Int J Dent Hyg; 2016 Aug; 14(3):191-201. PubMed ID: 26094557 [TBL] [Abstract][Full Text] [Related]
17. Effect of laser polishing on the surface roughness and corrosion resistance of Nitinol stents. Park CH; Tijing LD; Pant HR; Kim CS Biomed Mater Eng; 2015; 25(1):67-75. PubMed ID: 25585981 [TBL] [Abstract][Full Text] [Related]
18. Results of a Surface Roughness Comparison between Stylus Instruments and Confocal Microscopes. Mínguez-Martínez A; Maresca P; Caja J; Oliva JVY Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013632 [TBL] [Abstract][Full Text] [Related]
19. Comparison of two observational methods, scanning electron and confocal laser scanning microscopies, in the adhesive interface analysis of endodontic sealers to root dentine. Tedesco M; Chain MC; Bortoluzzi EA; da Fonseca Roberti Garcia L; Alves AMH; Teixeira CS Clin Oral Investig; 2018 Jul; 22(6):2353-2361. PubMed ID: 29344806 [TBL] [Abstract][Full Text] [Related]
20. Direct assessment of profilometric roughness variability from typical implant surface types. Kohles SS; Clark MB; Brown CA; Kenealy JN Int J Oral Maxillofac Implants; 2004; 19(4):510-6. PubMed ID: 15346747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]