These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30767984)

  • 1. Compensating spatially dependent dispersion in visible light OCT.
    Kho A; Srinivasan VJ
    Opt Lett; 2019 Feb; 44(4):775-778. PubMed ID: 30767984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking.
    Zhang T; Kho AM; Srinivasan VJ
    Biomed Opt Express; 2019 Jun; 10(6):2918-2931. PubMed ID: 31259062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water wavenumber calibration for visible light optical coherence tomography.
    Zhang T; Kho AM; Srinivasan VJ
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32935500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range.
    Marschall S; Pedersen C; Andersen PE
    Biomed Opt Express; 2012 Jul; 3(7):1620-31. PubMed ID: 22808433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular Comparison of Visible-Light Optical Coherence Tomography and Electron Microscopy in the Mouse Outer Retina.
    Chauhan P; Kho AM; FitzGerald P; Shibata B; Srinivasan VJ
    Invest Ophthalmol Vis Sci; 2022 Aug; 63(9):10. PubMed ID: 35943734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization.
    Chong SP; Zhang T; Kho A; Bernucci MT; Dubra A; Srinivasan VJ
    Biomed Opt Express; 2018 Apr; 9(4):1477-1491. PubMed ID: 29675296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible Light Optical Coherence Tomography (OCT) Quantifies Subcellular Contributions to Outer Retinal Band 4.
    Zhang T; Kho AM; Yiu G; Srinivasan VJ
    Transl Vis Sci Technol; 2021 Mar; 10(3):30. PubMed ID: 34003965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy.
    Yi J; Chen S; Shu X; Fawzi AA; Zhang HF
    Biomed Opt Express; 2015 Oct; 6(10):3701-13. PubMed ID: 26504622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh-resolution optical coherence tomography at 1.15 mum using photonic crystal fiber with no zero-dispersion wavelengths.
    Wang H; Fleming CP; Rollins AM
    Opt Express; 2007 Mar; 15(6):3085-92. PubMed ID: 19532547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media.
    Marks DL; Oldenburg AL; Reynolds JJ; Boppart SA
    Appl Opt; 2003 Jan; 42(2):204-17. PubMed ID: 12546500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-band optical coherence tomography using a single supercontinuum laser source.
    Chen S; Shu X; Yi J; Fawzi A; Zhang HF
    J Biomed Opt; 2016 Jun; 21(6):66013. PubMed ID: 27304421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible Light Optical Coherence Tomography Reveals the Relationship of the Myoid and Ellipsoid to Band 2 in Humans.
    Srinivasan VJ; Kho AM; Chauhan P
    Transl Vis Sci Technol; 2022 Sep; 11(9):3. PubMed ID: 36053140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible light sensorless adaptive optics for retinal structure and fluorescence imaging.
    Ju MJ; Huang C; Wahl DJ; Jian Y; Sarunic MV
    Opt Lett; 2018 Oct; 43(20):5162-5165. PubMed ID: 30320845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina.
    Choi W; Baumann B; Swanson EA; Fujimoto JG
    Opt Express; 2012 Nov; 20(23):25357-68. PubMed ID: 23187353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micrometer axial resolution OCT for corneal imaging.
    Yadav R; Lee KS; Rolland JP; Zavislan JM; Aquavella JV; Yoon G
    Biomed Opt Express; 2011 Nov; 2(11):3037-46. PubMed ID: 22076265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography.
    Bizheva K; Unterhuber A; Hermann B; Povazay B; Sattmann H; Drexler W; Stingl A; Le T; Mei M; Holzwarth R; Reitsamer HA; Morgan JE; Cowey A
    J Biomed Opt; 2004; 9(4):719-24. PubMed ID: 15250758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography.
    Fernández E; Drexler W
    Opt Express; 2005 Oct; 13(20):8184-97. PubMed ID: 19498848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography.
    Unterhuber A; Povazay B; Bizheva K; Hermann B; Sattmann H; Stingl A; Le T; Seefeld M; Menzel R; Preusser M; Budka H; Schubert Ch; Reitsamer H; Ahnelt PK; Morgan JE; Cowey A; Drexler W
    Phys Med Biol; 2004 Apr; 49(7):1235-46. PubMed ID: 15128201
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.