These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 30767986)
1. 40 nm thick photoresist-compatible plasmonic nanolithography using a bowtie aperture combined with a metal-insulator-metal structure. Jiang Z; Luo H; Guo S; Wang L Opt Lett; 2019 Feb; 44(4):783-786. PubMed ID: 30767986 [TBL] [Abstract][Full Text] [Related]
2. Parallel optical nanolithography using nanoscale bowtie aperture array. Uppuluri SM; Kinzel EC; Li Y; Xu X Opt Express; 2010 Mar; 18(7):7369-75. PubMed ID: 20389758 [TBL] [Abstract][Full Text] [Related]
3. Resonant Effects in Nanoscale Bowtie Apertures. Ding L; Qin J; Guo S; Liu T; Kinzel E; Wang L Sci Rep; 2016 Jun; 6():27254. PubMed ID: 27250995 [TBL] [Abstract][Full Text] [Related]
4. Characterization of three-dimensional field distribution of bowtie aperture using quasi-spherical waves and surface plasmon polaritons. Park C; Jung H; Hahn JW Sci Rep; 2017 Mar; 7():45352. PubMed ID: 28358013 [TBL] [Abstract][Full Text] [Related]
5. Achieving high aspect ratio in plasmonic lithography for practical applications with sub-20 nm half pitch. Han D; Wei Y Opt Express; 2022 Jun; 30(12):20589-20604. PubMed ID: 36224800 [TBL] [Abstract][Full Text] [Related]
6. The effect of electron dose on positive polymethyl methacrylate resist for nanolithography of gold bowtie nanoantennas. Campbell C; Casey A; Triplett G Heliyon; 2022 May; 8(5):e09475. PubMed ID: 35663762 [TBL] [Abstract][Full Text] [Related]
7. Surface-plasmon-polaritons-assisted nanolithography with dual-wavelength illumination for high exposure depth. Shi S; Zhang Z; Du J; Yang Z; Shi R; Li S; Gao F Opt Lett; 2012 Jan; 37(2):247-9. PubMed ID: 22854482 [TBL] [Abstract][Full Text] [Related]
8. Near- and far-field study of polarization-dependent surface plasmon resonance in bowtie nano-aperture arrays. Choi S; Park J; Chew SH; Khurelbaatar T; Gliserin A; Kim S; Kim DE Opt Express; 2023 Sep; 31(20):31760-31767. PubMed ID: 37858993 [TBL] [Abstract][Full Text] [Related]
9. Deep plasmonic direct writing lithography with ENZ metamaterials and nanoantenna. Luo H; Qin J; Kinzel E; Wang L Nanotechnology; 2019 Oct; 30(42):425303. PubMed ID: 31328721 [TBL] [Abstract][Full Text] [Related]
10. Plasmonic wavelength splitter based on a metal-insulator-metal waveguide with a graded grating coupler. Yu Y; Si J; Ning Y; Sun M; Deng X Opt Lett; 2017 Jan; 42(2):187-190. PubMed ID: 28081068 [TBL] [Abstract][Full Text] [Related]
11. The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system. Ji J; Hu Y; Meng Y; Zhang J; Xu J; Li S; Yang G Nanotechnology; 2016 May; 27(18):185303. PubMed ID: 27010406 [TBL] [Abstract][Full Text] [Related]
12. Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure. Yao N; Wang C; Tao X; Wang Y; Zhao Z; Luo X Nanotechnology; 2013 Apr; 24(13):135203. PubMed ID: 23478204 [TBL] [Abstract][Full Text] [Related]
16. Hybridized plasmonic modes and Fabry-Perot effect in nanoscale bowtie aperture waveguide. Zhang L; Qin J; Guo S; Wang L Opt Express; 2019 Jun; 27(12):17221-17227. PubMed ID: 31252935 [TBL] [Abstract][Full Text] [Related]
17. Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal. Kim Y; Jung H; Kim S; Jang J; Lee JY; Hahn JW Opt Express; 2011 Sep; 19(20):19296-309. PubMed ID: 21996870 [TBL] [Abstract][Full Text] [Related]
18. Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. Han Z; Van V; Herman WN; Ho PT Opt Express; 2009 Jul; 17(15):12678-84. PubMed ID: 19654672 [TBL] [Abstract][Full Text] [Related]
19. Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture. Murphy-DuBay N; Wang L; Kinzel EC; Uppuluri SM; Xu X Opt Express; 2008 Feb; 16(4):2584-9. PubMed ID: 18542340 [TBL] [Abstract][Full Text] [Related]
20. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field. Wen X; Datta A; Traverso LM; Pan L; Xu X; Moon EE Sci Rep; 2015 Nov; 5():16192. PubMed ID: 26525906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]