These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 30768021)
1. Chromatic-dispersion-induced power-fading suppression technique for bandwidth-quadrupling dual-chirp microwave signals over fiber transmission. Zhu S; Li M; Zhu NH; Li W Opt Lett; 2019 Feb; 44(4):923-926. PubMed ID: 30768021 [TBL] [Abstract][Full Text] [Related]
2. Photonic generation of quadruple bandwidth dual-band dual-chirp microwave waveforms with immunity to power fading. Fan X; Zhu S; Du J; Li M; Zhu NH; Li W Opt Lett; 2021 Feb; 46(4):868-871. PubMed ID: 33577534 [TBL] [Abstract][Full Text] [Related]
3. Transmission of dual-chirp microwave waveform over fiber with compensation of dispersion-induced power fading. Zhu S; Li M; Zhu NH; Li W Opt Lett; 2018 Jun; 43(11):2466-2469. PubMed ID: 29856405 [TBL] [Abstract][Full Text] [Related]
4. Dual-chirp microwave waveform transmitter with elimination of power fading for one-to-multibase station fiber transmission. Zhu S; Fan X; Li M; Zhu NH; Li W Opt Lett; 2020 Mar; 45(5):1285-1288. PubMed ID: 32108827 [TBL] [Abstract][Full Text] [Related]
5. Anti-chromatic dispersion transmission of frequency and bandwidth-doubling dual-chirp microwave waveform. Zhang K; Zhao SH; Wen AJ; Zhang W; Zhai WL; Lin T; Li X Opt Lett; 2019 Aug; 44(16):4004-4007. PubMed ID: 31415533 [TBL] [Abstract][Full Text] [Related]
6. Photonic-assisted multi-format dual-band microwave signal generator without background noise. Fan X; Jin Y; Cao X; Chen Y; Wang X; Li M; Zhu N; Li W Opt Express; 2023 May; 31(11):18346-18355. PubMed ID: 37381547 [TBL] [Abstract][Full Text] [Related]
7. Anti-dispersion phase-tunable microwave mixer based on a dual-drive dual-parallel Mach-Zehnder modulator. Xie M; Zhao M; Lei M; Wu Y; Liu Y; Gao X; Huang S Opt Express; 2018 Jan; 26(1):454-462. PubMed ID: 29328322 [TBL] [Abstract][Full Text] [Related]
8. Photonics-based multi-band linearly frequency modulated signal generation and anti-chromatic dispersion transmission. Zhang K; Zhao S; Wen A; Zhai W; Lin T; Li X; Wang G; Li H Opt Express; 2020 Mar; 28(6):8350-8362. PubMed ID: 32225462 [TBL] [Abstract][Full Text] [Related]
9. Tunable 360° microwave photonic multichannel phase shifter with frequency quadrupling. Wang W; Wen A; Tu Z; Liang D; Chen M; Li X; Xiao J Appl Opt; 2018 Jun; 57(17):4751-4755. PubMed ID: 30118089 [TBL] [Abstract][Full Text] [Related]
10. Photonic generation of dual-band dual-chirp waveforms with anti-dispersion transmission. Yang S; Zhu W; Chi H; Yang B; Ou J; Zhai Y Appl Opt; 2023 May; 62(13):3512-3518. PubMed ID: 37132853 [TBL] [Abstract][Full Text] [Related]
11. Filter-free photonic microwave upconverter with frequency quadrupling. Ma J; Wen A; Tu Z Appl Opt; 2019 Oct; 58(28):7915-7920. PubMed ID: 31674481 [TBL] [Abstract][Full Text] [Related]
12. Compensation of dispersion-induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation. Li S; Zheng X; Zhang H; Zhou B Opt Lett; 2011 Feb; 36(4):546-8. PubMed ID: 21326451 [TBL] [Abstract][Full Text] [Related]
13. Analysis of frequency quadrupling using a single Mach-Zehnder modulator for millimeter-wave generation and distribution over fiber systems. Mohamed M; Zhang X; Hraimel B; Wu K Opt Express; 2008 Jul; 16(14):10786-802. PubMed ID: 18607494 [TBL] [Abstract][Full Text] [Related]
14. A novel method for combating dispersion induced power fading in dispersion compensating fiber. Lebedev A; Olmos JJ; Iglesias M; Forchhammer S; Monroy IT Opt Express; 2013 Jun; 21(11):13617-25. PubMed ID: 23736614 [TBL] [Abstract][Full Text] [Related]
15. Photonic generation and transmission for an X-band dual-chirp waveform with frequency multiplication and power-fading compensation. Gao Y; Huang C; He H; Yang S; Yang B; Chi H Appl Opt; 2024 Jan; 63(1):204-209. PubMed ID: 38175022 [TBL] [Abstract][Full Text] [Related]
16. Photonic architecture for remote multi-parameter measurement and transmission of microwave signals. Wang Y; Yang S; Yang B; Chi H Opt Express; 2024 May; 32(10):18033-18043. PubMed ID: 38858969 [TBL] [Abstract][Full Text] [Related]
17. Broadband dual-chirp FMCW laser source based on DSB-SC modulation and cascaded FWM. Xiao Z; Wu Z; Xia G Opt Express; 2023 Aug; 31(18):29925-29933. PubMed ID: 37710781 [TBL] [Abstract][Full Text] [Related]
18. Photonic generation of a parabolic-shaped microwave signal and dual-linear-chirp microwave waveform. Kumar R; Raghuwanshi SK Appl Opt; 2020 Jul; 59(20):6024-6029. PubMed ID: 32672745 [TBL] [Abstract][Full Text] [Related]
19. Photonic-based microwave hybrid combiner with arbitrarily tunable phase shift and power combining ratio. Zhu S; Gao M; Li M; Zhu N; Li W Opt Lett; 2019 Apr; 44(8):2012-2015. PubMed ID: 30985798 [TBL] [Abstract][Full Text] [Related]
20. Theoretical investigation of a photonic-assisted instantaneous frequency measurement with a tunable measurement range and resolution by adjusting the chirp parameter of an optical intensity modulator. Ganjali M; Esmail Hosseini S; Jamshidi K; Plettemeier D Appl Opt; 2019 Dec; 58(36):9990-9997. PubMed ID: 31873647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]