These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30768643)

  • 1. Raman spectroscopic evaluation of human serum using metal plate and 785- and 1064-nm excitation lasers.
    Ito H; Uragami N; Miyazaki T; Yokoyama N; Inoue H
    PLoS One; 2019; 14(2):e0211986. PubMed ID: 30768643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared nanosecond pulsed laser irradiation of stainless steel: micro iron-oxide zones generation.
    Ortiz-Morales M; Frausto-Reyes C; Soto-Bernal JJ; Acosta-Ortiz SE; Gonzalez-Mota R; Rosales-Candelas I
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():681-5. PubMed ID: 24699286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopic analysis of iron chromium oxide microspheres generated by nanosecond pulsed laser irradiation on stainless steel.
    Ortiz-Morales M; Soto-Bernal JJ; Frausto-Reyes C; Acosta-Ortiz SE; Gonzalez-Mota R; Rosales-Candelas I
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 145():505-510. PubMed ID: 25797225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopic investigation of solid samples using a low-repetition-rate pulsed Nd:YAG laser as the excitation source.
    Zhang J; Feng Z; Li M; Chen J; Xu Q; Lian Y; Li C
    Appl Spectrosc; 2007 Jan; 61(1):38-47. PubMed ID: 17311715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flow cytometer for the measurement of Raman spectra.
    Watson DA; Brown LO; Gaskill DF; Naivar M; Graves SW; Doorn SK; Nolan JP
    Cytometry A; 2008 Feb; 73(2):119-28. PubMed ID: 18189283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced characterization of breast cancer phenotypes using Raman micro-spectroscopy on stainless steel substrate.
    Thomas G; Fitzgerald ST; Gautam R; Chen F; Haugen E; Rasiah PK; Adams WR; Mahadevan-Jansen A
    Anal Methods; 2023 Mar; 15(9):1188-1205. PubMed ID: 36799369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1064 nm Dispersive Raman Microspectroscopy and Optical Trapping of Pharmaceutical Aerosols.
    Gallimore PJ; Davidson NM; Kalberer M; Pope FD; Ward AD
    Anal Chem; 2018 Aug; 90(15):8838-8844. PubMed ID: 29956916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red-shifted fluorescence of sound dental hard tissue.
    Zhang L; Nelson LY; Seibel EJ
    J Biomed Opt; 2011 Jul; 16(7):071411. PubMed ID: 21806257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources.
    István K; Keresztury G; Szép A
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1709-23. PubMed ID: 12736057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiwavelength Raman Spectroscopic Analysis of Superficial Iron-Chromium Oxides Generated Using Laser Irradiation.
    Ortiz-Morales M; Soto-Bernal JJ; Frausto-Reyes C; Acosta-Ortiz SE; Gonzalez-Mota R; Rosales-Candelas I
    Appl Spectrosc; 2018 Jun; 72(6):879-885. PubMed ID: 29381100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy of white wines.
    Martin C; Bruneel JL; Guyon F; Médina B; Jourdes M; Teissedre PL; Guillaume F
    Food Chem; 2015 Aug; 181():235-40. PubMed ID: 25794745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman spectroscopy of optically trapped functional erythrocytes.
    Ramser K; Logg K; Goksör M; Enger J; Käll M; Hanstorp D
    J Biomed Opt; 2004; 9(3):593-600. PubMed ID: 15189098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser Raman spectrum of calcified human aorta.
    Klug DD; Singleton DL; Walley VM
    Lasers Surg Med; 1992; 12(1):13-7. PubMed ID: 1319533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.
    Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U
    ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of laser wavelength on the Raman Spectra of phenanthrene, chrysene, and tetracene: implications for extra-terrestrial detection of polyaromatic hydrocarbons.
    Alajtal AI; Edwards HG; Elbagerma MA; Scowen IJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jun; 76(1):1-5. PubMed ID: 20308013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of uranium in aqueous solutions using a semiconductor laser-based spectroscopic method.
    Cho HR; Jung EC; Cha W; Song K
    Anal Chem; 2013 May; 85(9):4279-83. PubMed ID: 23534889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of methyl green using surface-enhanced resonance Raman scattering.
    Shadi IT; Cheung W; Goodacre R
    Anal Bioanal Chem; 2009 Aug; 394(7):1833-8. PubMed ID: 19544054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm.
    Gao ZL; Liu SD; Zhang JJ; Zhang SJ; Zhang WG; He JL; Tao XT
    Opt Express; 2013 Mar; 21(6):7821-7. PubMed ID: 23546163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tip-enhanced optical spectroscopy.
    Hartschuh A; Beversluis MR; Bouhelier A; Novotny L
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):807-19. PubMed ID: 15306495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsystem 671 nm light source for shifted excitation Raman difference spectroscopy.
    Maiwald M; Schmidt H; Sumpf B; Erbert G; Kronfeldt HD; Tränkle G
    Appl Opt; 2009 May; 48(15):2789-92. PubMed ID: 19458726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.