BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30768643)

  • 21. Raman scattering for dosimetry using GAFCHROMIC EBT3 radiochromic dosimetry film.
    Talarico OS; Krylova TA; Melnik NN
    Med Phys; 2019 Apr; 46(4):1883-1887. PubMed ID: 30714157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse.
    Misra AK; Sharma SK; Lucey PG
    Appl Spectrosc; 2006 Feb; 60(2):223-8. PubMed ID: 16542575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Portable spectroscopic system for in vivo skin neoplasms diagnostics by Raman and autofluorescence analysis.
    Khristoforova YA; Bratchenko IA; Myakinin OO; Artemyev DN; Moryatov AA; Orlov AE; Kozlov SV; Zakharov VP
    J Biophotonics; 2019 Apr; 12(4):e201800400. PubMed ID: 30597749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Breast cancer detection based on serum sample surface enhanced Raman spectroscopy.
    Vargas-Obieta E; Martínez-Espinosa JC; Martínez-Zerega BE; Jave-Suárez LF; Aguilar-Lemarroy A; González-Solís JL
    Lasers Med Sci; 2016 Sep; 31(7):1317-24. PubMed ID: 27289243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging.
    Stürzl N; Lebedkin S; Klumpp S; Hennrich F; Kappes MM
    Anal Chem; 2013 May; 85(9):4554-9. PubMed ID: 23521587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.
    Lednev VN; Pershin SM; Sdvizhenskii PA; Grishin MY; Fedorov AN; Bukin VV; Oshurko VB; Shchegolikhin AN
    Anal Bioanal Chem; 2018 Jan; 410(1):277-286. PubMed ID: 29119255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers.
    Iping Petterson IE; Dvořák P; Buijs JB; Gooijer C; Ariese F
    Analyst; 2010 Dec; 135(12):3255-9. PubMed ID: 20941438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New trends in telescopic remote Raman spectroscopic instrumentation.
    Sharma SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.
    Sharma SK; Misra AK; Lucey PG; Lentz RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical design for laser tweezers Raman spectroscopy setups for increased sensitivity and flexible spatial detection.
    Dahlberg T; Andersson M
    Appl Opt; 2021 Jun; 60(16):4519-4523. PubMed ID: 34143005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of chemical warfare agents by portable Raman spectrometer with both 785nm and 1064nm excitation.
    Kondo T; Hashimoto R; Ohrui Y; Sekioka R; Nogami T; Muta F; Seto Y
    Forensic Sci Int; 2018 Oct; 291():23-38. PubMed ID: 30125768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of excitation wavelength on the Raman spectroscopy of the porcine photoreceptor layer from the area centralis.
    Beattie JR; Brockbank S; McGarvey JJ; Curry WJ
    Mol Vis; 2005 Sep; 11():825-32. PubMed ID: 16254551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wavelength-scanned surface-enhanced Raman excitation spectroscopy.
    McFarland AD; Young MA; Dieringer JA; Van Duyne RP
    J Phys Chem B; 2005 Jun; 109(22):11279-85. PubMed ID: 16852377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments.
    Dochow S; Krafft C; Neugebauer U; Bocklitz T; Henkel T; Mayer G; Albert J; Popp J
    Lab Chip; 2011 Apr; 11(8):1484-90. PubMed ID: 21340095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes.
    Mildren RP; Piper JA
    Opt Express; 2008 Mar; 16(5):3261-72. PubMed ID: 18542414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lidar measurements of Raman scattering at ultraviolet wavelength from mineral dust over East Asia.
    Tatarov B; Müller D; Shin DH; Shin SK; Mattis I; Seifert P; Noh YM; Kim YJ; Sugimoto N
    Opt Express; 2011 Jan; 19(2):1569-81. PubMed ID: 21263697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy.
    Ghita A; Matousek P; Stone N
    Analyst; 2016 Oct; 141(20):5738-5746. PubMed ID: 27464358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Study of biological molecules in water by using the resonance raman spectra in liquid-core optical fiber].
    Jia LH; Wang YD; Sun CL; Li ZL; Li ZW; Wang LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2686-8. PubMed ID: 20038038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable kHz deep ultraviolet (193-210 nm) laser for Raman application.
    Balakrishnan G; Hu Y; Nielsen SB; Spiro TG
    Appl Spectrosc; 2005 Jun; 59(6):776-81. PubMed ID: 16053544
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A facile preparation route for netlike microstructures on a stainless steel using an ethanol-mediated femtosecond laser irradiation.
    Bian H; Yang Q; Liu H; Chen F; Du G; Si J; Hou X
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):663-7. PubMed ID: 25427471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.