These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30768969)

  • 1. Oxidation of imidazole- and pyrazole-derived aldehydes by plant aldehyde dehydrogenases from the family 2 and 10.
    Frömmel J; Končitíková R; Kopečný D; Soural M; Šebela M
    Chem Biol Interact; 2019 May; 304():194-201. PubMed ID: 30768969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-acyl-ω-aminoaldehydes are efficient substrates of plant aminoaldehyde dehydrogenases.
    Frömmel J; Šebela M; Demo G; Lenobel R; Pospíšil T; Soural M; Kopečný D
    Amino Acids; 2015 Jan; 47(1):175-87. PubMed ID: 25344796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant aminoaldehyde dehydrogenases oxidize a wide range of nitrogenous heterocyclic aldehydes.
    Frömmel J; Soural M; Tylichová M; Kopečný D; Demo G; Wimmerová M; Sebela M
    Amino Acids; 2012 Sep; 43(3):1189-202. PubMed ID: 22160258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate.
    Kopečny D; Končitíková R; Tylichová M; Vigouroux A; Moskalíková H; Soural M; Šebela M; Moréra S
    J Biol Chem; 2013 Mar; 288(13):9491-507. PubMed ID: 23408433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7.
    Končitíková R; Vigouroux A; Kopečná M; Andree T; Bartoš J; Šebela M; Moréra S; Kopečný D
    Biochem J; 2015 May; 468(1):109-23. PubMed ID: 25734422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants of substrate specificity in aldehyde dehydrogenases.
    Riveros-Rosas H; González-Segura L; Julián-Sánchez A; Díaz-Sánchez AG; Muñoz-Clares RA
    Chem Biol Interact; 2013 Feb; 202(1-3):51-61. PubMed ID: 23219887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates.
    Frömmel J; Tarkowski P; Kopečný D; Šebela M
    N Biotechnol; 2016 Sep; 33(5 Pt B):666-675. PubMed ID: 26703808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes.
    Klyosov AA
    Biochemistry; 1996 Apr; 35(14):4457-67. PubMed ID: 8605195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes.
    Tylichová M; Kopecný D; Moréra S; Briozzo P; Lenobel R; Snégaroff J; Sebela M
    J Mol Biol; 2010 Mar; 396(4):870-82. PubMed ID: 20026072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity of human and yeast aldehyde dehydrogenases.
    Wang MF; Han CL; Yin SJ
    Chem Biol Interact; 2009 Mar; 178(1-3):36-9. PubMed ID: 18983993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes.
    Panoutsopoulos GI; Kouretas D; Beedham C
    Chem Res Toxicol; 2004 Oct; 17(10):1368-76. PubMed ID: 15487898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the evolutionary route of the acquisition of betaine aldehyde dehydrogenase activity by plant ALDH10 enzymes: implications for the synthesis of the osmoprotectant glycine betaine.
    Muñoz-Clares RA; Riveros-Rosas H; Garza-Ramos G; González-Segura L; Mújica-Jiménez C; Julián-Sánchez A
    BMC Plant Biol; 2014 May; 14():149. PubMed ID: 24884441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid aldehyde oxidation as a physiological role for class 3 aldehyde dehydrogenases.
    Lindahl R; Petersen DR
    Biochem Pharmacol; 1991 Jun; 41(11):1583-7. PubMed ID: 2043148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human aldehyde dehydrogenase-catalyzed oxidation of ethylene glycol ether aldehydes.
    Gross A; Ong TR; Grant R; Hoffmann T; Gregory DD; Sreerama L
    Chem Biol Interact; 2009 Mar; 178(1-3):56-63. PubMed ID: 18940187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.
    Winberg JO; McKinley-McKee JS
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):561-70. PubMed ID: 9445383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of glutamate 399 and lysine 192 in the mechanism of human liver mitochondrial aldehyde dehydrogenase.
    Ni L; Sheikh S; Weiner H
    J Biol Chem; 1997 Jul; 272(30):18823-6. PubMed ID: 9228057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional specialization of maize mitochondrial aldehyde dehydrogenases.
    Liu F; Schnable PS
    Plant Physiol; 2002 Dec; 130(4):1657-74. PubMed ID: 12481049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of a series of aromatic lactones as ALDH1/2-directed inhibitors.
    Buchman CD; Mahalingan KK; Hurley TD
    Chem Biol Interact; 2015 Jun; 234():38-44. PubMed ID: 25641190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Substrate specificities and inhibition studies.
    MacKintosh RW; Fewson CA
    Biochem J; 1988 Oct; 255(2):653-61. PubMed ID: 3060114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective oxidation of trans-4-hydroxy-2-nonenal is aldehyde dehydrogenase isozyme and Mg2+ dependent.
    Brichac J; Ho KK; Honzatko A; Wang R; Lu X; Weiner H; Picklo MJ
    Chem Res Toxicol; 2007 Jun; 20(6):887-95. PubMed ID: 17480102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.