BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 30768984)

  • 1. Systems Biology Analyses Show Hyperactivation of Transforming Growth Factor-β and JNK Signaling Pathways in Esophageal Cancer.
    Blum AE; Venkitachalam S; Ravillah D; Chelluboyina AK; Kieber-Emmons AM; Ravi L; Kresak A; Chandar AK; Markowitz SD; Canto MI; Wang JS; Shaheen NJ; Guo Y; Shyr Y; Willis JE; Chak A; Varadan V; Guda K
    Gastroenterology; 2019 May; 156(6):1761-1774. PubMed ID: 30768984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoforms of RNF128 Regulate the Stability of Mutant P53 in Barrett's Esophageal Cells.
    Ray D; Ray P; Ferrer-Torres D; Wang Z; Nancarrow D; Yoon HW; San Martinho M; Hinton T; Owens S; Thomas D; Jiang H; Lawrence TS; Lin J; Lagisetty K; Chang AC; Beer DG
    Gastroenterology; 2020 Feb; 158(3):583-597.e1. PubMed ID: 31715145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Esophageal Adenocarcinoma Cells and Xenograft Tumors Exposed to Erb-b2 Receptor Tyrosine Kinase 2 and 3 Inhibitors Activate Transforming Growth Factor Beta Signaling, Which Induces Epithelial to Mesenchymal Transition.
    Ebbing EA; Steins A; Fessler E; Stathi P; Lesterhuis WJ; Krishnadath KK; Vermeulen L; Medema JP; Bijlsma MF; van Laarhoven HWM
    Gastroenterology; 2017 Jul; 153(1):63-76.e14. PubMed ID: 28286209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subtypes of Barrett's oesophagus and oesophageal adenocarcinoma based on genome-wide methylation analysis.
    Yu M; Maden SK; Stachler M; Kaz AM; Ayers J; Guo Y; Carter KT; Willbanks A; Heinzerling TJ; O'Leary RM; Xu X; Bass A; Chandar AK; Chak A; Elliott R; Willis JE; Markowitz SD; Grady WM
    Gut; 2019 Mar; 68(3):389-399. PubMed ID: 29884612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Notch Signaling Mediates Differentiation in Barrett's Esophagus and Promotes Progression to Adenocarcinoma.
    Kunze B; Wein F; Fang HY; Anand A; Baumeister T; Strangmann J; Gerland S; Ingermann J; Münch NS; Wiethaler M; Sahm V; Hidalgo-Sastre A; Lange S; Lightdale CJ; Bokhari A; Falk GW; Friedman RA; Ginsberg GG; Iyer PG; Jin Z; Nakagawa H; Shawber CJ; Nguyen T; Raab WJ; Dalerba P; Rustgi AK; Sepulveda AR; Wang KK; Schmid RM; Wang TC; Abrams JA; Quante M
    Gastroenterology; 2020 Aug; 159(2):575-590. PubMed ID: 32325086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocrine VEGF signaling promotes proliferation of neoplastic Barrett's epithelial cells through a PLC-dependent pathway.
    Zhang Q; Yu C; Peng S; Xu H; Wright E; Zhang X; Huo X; Cheng E; Pham TH; Asanuma K; Hatanpaa KJ; Rezai D; Wang DH; Sarode V; Melton S; Genta RM; Spechler SJ; Souza RF
    Gastroenterology; 2014 Feb; 146(2):461-72.e6. PubMed ID: 24120473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of SMAD4 Is Sufficient to Promote Tumorigenesis in a Model of Dysplastic Barrett's Esophagus.
    Gotovac JR; Kader T; Milne JV; Fujihara KM; Lara-Gonzalez LE; Gorringe KL; Kalimuthu SN; Jayawardana MW; Duong CP; Phillips WA; Clemons NJ
    Cell Mol Gastroenterol Hepatol; 2021; 12(2):689-713. PubMed ID: 33774196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma.
    Wu W; Bhagat TD; Yang X; Song JH; Cheng Y; Agarwal R; Abraham JM; Ibrahim S; Bartenstein M; Hussain Z; Suzuki M; Yu Y; Chen W; Eng C; Greally J; Verma A; Meltzer SJ
    Gastroenterology; 2013 May; 144(5):956-966.e4. PubMed ID: 23333711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus.
    Streppel MM; Lata S; DelaBastide M; Montgomery EA; Wang JS; Canto MI; Macgregor-Das AM; Pai S; Morsink FH; Offerhaus GJ; Antoniou E; Maitra A; McCombie WR
    Oncogene; 2014 Jan; 33(3):347-57. PubMed ID: 23318448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Esophageal pepsin and proton pump synthesis in barrett's esophagus and esophageal adenocarcinoma.
    Samuels TL; Altman KW; Gould JC; Kindel T; Bosler M; MacKinnon A; Hagen CE; Johnston N
    Laryngoscope; 2019 Dec; 129(12):2687-2695. PubMed ID: 31046139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Subtypes of Barrett's Esophagus and Esophageal Adenocarcinoma Based on DNA Methylation Profiles and Integration of Transcriptome and Genome Data.
    Jammula S; Katz-Summercorn AC; Li X; Linossi C; Smyth E; Killcoyne S; Biasci D; Subash VV; Abbas S; Blasko A; Devonshire G; Grantham A; Wronowski F; O'Donovan M; Grehan N; Eldridge MD; Tavaré S; ; Fitzgerald RC
    Gastroenterology; 2020 May; 158(6):1682-1697.e1. PubMed ID: 32032585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-depth characterization of the Wnt-signaling/β-catenin pathway in an in vitro model of Barrett's sequence.
    Götzel K; Chemnitzer O; Maurer L; Dietrich A; Eichfeld U; Lyros O; Moulla Y; Niebisch S; Mehdorn M; Jansen-Winkeln B; Vieth M; Hoffmeister A; Gockel I; Thieme R
    BMC Gastroenterol; 2019 Mar; 19(1):38. PubMed ID: 30841855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bile acids increase levels of microRNAs 221 and 222, leading to degradation of CDX2 during esophageal carcinogenesis.
    Matsuzaki J; Suzuki H; Tsugawa H; Watanabe M; Hossain S; Arai E; Saito Y; Sekine S; Akaike T; Kanai Y; Mukaisho K; Auwerx J; Hibi T
    Gastroenterology; 2013 Dec; 145(6):1300-11. PubMed ID: 23933602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypermethylation of the AKAP12 promoter is a biomarker of Barrett's-associated esophageal neoplastic progression.
    Jin Z; Hamilton JP; Yang J; Mori Y; Olaru A; Sato F; Ito T; Kan T; Cheng Y; Paun B; David S; Beer DG; Agarwal R; Abraham JM; Meltzer SJ
    Cancer Epidemiol Biomarkers Prev; 2008 Jan; 17(1):111-7. PubMed ID: 18199717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett's esophagus.
    Clément G; Braunschweig R; Pasquier N; Bosman FT; Benhattar J
    Oncogene; 2006 May; 25(21):3084-92. PubMed ID: 16407829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of glutathione peroxidase 7 promotes TNF-α-induced NF-κB activation in Barrett's carcinogenesis.
    Peng DF; Hu TL; Soutto M; Belkhiri A; El-Rifai W
    Carcinogenesis; 2014 Jul; 35(7):1620-8. PubMed ID: 24692067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired transforming growth factor beta signalling in Barrett's carcinogenesis due to frequent SMAD4 inactivation.
    Onwuegbusi BA; Aitchison A; Chin SF; Kranjac T; Mills I; Huang Y; Lao-Sirieix P; Caldas C; Fitzgerald RC
    Gut; 2006 Jun; 55(6):764-74. PubMed ID: 16368780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk.
    Schulmann K; Sterian A; Berki A; Yin J; Sato F; Xu Y; Olaru A; Wang S; Mori Y; Deacu E; Hamilton J; Kan T; Krasna MJ; Beer DG; Pepe MS; Abraham JM; Feng Z; Schmiegel W; Greenwald BD; Meltzer SJ
    Oncogene; 2005 Jun; 24(25):4138-48. PubMed ID: 15824739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole genome expression array profiling highlights differences in mucosal defense genes in Barrett's esophagus and esophageal adenocarcinoma.
    Nancarrow DJ; Clouston AD; Smithers BM; Gotley DC; Drew PA; Watson DI; Tyagi S; Hayward NK; Whiteman DC; ;
    PLoS One; 2011; 6(7):e22513. PubMed ID: 21829465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression analysis of Barrett's esophagus-associated high-grade dysplasia in laser capture microdissected archival tissue.
    Sabo E; Meitner PA; Tavares R; Corless CL; Lauwers GY; Moss SF; Resnick MB
    Clin Cancer Res; 2008 Oct; 14(20):6440-8. PubMed ID: 18927283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.