These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30769172)

  • 1. Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms.
    Moradi F; Khandaker MU; Alrefae T; Ramazanian H; Bradley DA
    Appl Radiat Isot; 2019 Apr; 146():120-126. PubMed ID: 30769172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of various energy windows at different radionuclides for scatter and attenuation correction in nuclear medicine.
    Asgari A; Ashoor M; Sohrabpour M; Shokrani P; Rezaei A
    Ann Nucl Med; 2015 May; 29(4):375-83. PubMed ID: 25613356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water equivalent phantom materials for ¹⁹²Ir brachytherapy.
    Schoenfeld AA; Harder D; Poppe B; Chofor N
    Phys Med Biol; 2015 Dec; 60(24):9403-20. PubMed ID: 26579946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Track-average LET of secondary electrons generated in LiF:Mg,Ti and liquid water by 20-300 kV x-ray,
    Cabrera-Santiago A; Massillon-Jl G
    Phys Med Biol; 2016 Nov; 61(22):7919-7933. PubMed ID: 27779122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of gamma-ray self-attenuation correction in environmental samples by combining transmission measurements and Monte Carlo simulations.
    Šoštarić M; Babić D; Petrinec B; Zgorelec Ž
    Appl Radiat Isot; 2016 Jul; 113():110-6. PubMed ID: 27157125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.
    Figueroa RG; Valente M
    Phys Med Biol; 2015 Sep; 60(18):7191-206. PubMed ID: 26348025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of phantom materials on the energy dependence of LiF:Mg,Ti thermoluminescent dosimeters exposed to 20-300 kV narrow x-ray spectra, 137Cs and 60Co photons.
    Massillon-J L G; Cabrera-Santiago A; Minniti R; O'Brien M; Soares CG
    Phys Med Biol; 2014 Aug; 59(15):4149-66. PubMed ID: 25004055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of scatter and penetration using Monte Carlo simulation in 131I imaging.
    Dewaraja YK; Ljungberg M; Koral KF
    J Nucl Med; 2000 Jan; 41(1):123-30. PubMed ID: 10647615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.
    Benmakhlouf H; Bouchard H; Fransson A; Andreo P
    Phys Med Biol; 2011 Nov; 56(22):7179-204. PubMed ID: 22024474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose to tissue medium or water cavities as surrogate for the dose to cell nuclei at brachytherapy photon energies.
    Enger SA; Ahnesjö A; Verhaegen F; Beaulieu L
    Phys Med Biol; 2012 Jul; 57(14):4489-500. PubMed ID: 22722477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact x-ray sources for mammographic applications: Monte Carlo simulations of image quality.
    Oliva P; Golosio B; Stumbo S; Bravin A; Tomassini P
    Med Phys; 2009 Nov; 36(11):5149-61. PubMed ID: 19994525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated GPU based SPECT Monte Carlo simulations.
    Garcia MP; Bert J; Benoit D; Bardiès M; Visvikis D
    Phys Med Biol; 2016 Jun; 61(11):4001-18. PubMed ID: 27163656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity study of proton radiography and comparison with kV and MV x-ray imaging using GEANT4 Monte Carlo simulations.
    Depauw N; Seco J
    Phys Med Biol; 2011 Apr; 56(8):2407-21. PubMed ID: 21427482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of transmission properties of breast tissue equivalent materials under Compton scatter imaging setup.
    Yang K; Geng C; Li X; Liu B
    Phys Med; 2020 Apr; 72():32-38. PubMed ID: 32197220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams.
    Künzler T; Fotina I; Stock M; Georg D
    Phys Med Biol; 2009 Dec; 54(24):7363-77. PubMed ID: 19934489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technical note: Simulation of lung counting applications using Geant4.
    Jutila H; Greenlees P; Torvela T; Muikku M
    Phys Med; 2023 Apr; 108():102573. PubMed ID: 37003020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo study of electron spectra produced in semi-infinite and finite water phantoms irradiated by photons of energies up to 2 MeV.
    Pandey LN; Rustgi ML; Long SA
    Health Phys; 1987 Aug; 53(2):163-74. PubMed ID: 3610642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.