These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 30769234)
1. Assessment of PCL/carbon material scaffolds for bone regeneration. Wang W; Huang B; Byun JJ; Bártolo P J Mech Behav Biomed Mater; 2019 May; 93():52-60. PubMed ID: 30769234 [TBL] [Abstract][Full Text] [Related]
2. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Jing X; Mi HY; Turng LS Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():53-61. PubMed ID: 28024618 [TBL] [Abstract][Full Text] [Related]
3. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering. Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041 [TBL] [Abstract][Full Text] [Related]
5. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
6. Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: A review of their craniofacial applications. Kirmanidou Y; Chatzinikolaidou M; Michalakis K; Tsouknidas A Biomater Adv; 2024 Sep; 162():213902. PubMed ID: 38823255 [TBL] [Abstract][Full Text] [Related]
7. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810 [TBL] [Abstract][Full Text] [Related]
8. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration. Prabha RD; Kraft DCE; Harkness L; Melsen B; Varma H; Nair PD; Kjems J; Kassem M J Tissue Eng Regen Med; 2018 Mar; 12(3):e1537-e1548. PubMed ID: 28967188 [TBL] [Abstract][Full Text] [Related]
9. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration. Bagchi A; Meka SR; Rao BN; Chatterjee K Nanotechnology; 2014 Dec; 25(48):485101. PubMed ID: 25379989 [TBL] [Abstract][Full Text] [Related]
10. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613 [TBL] [Abstract][Full Text] [Related]
11. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
12. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338 [TBL] [Abstract][Full Text] [Related]
13. Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition. Wongsupa N; Nuntanaranont T; Kamolmattayakul S; Thuaksuban N J Mater Sci Mater Med; 2017 Feb; 28(2):25. PubMed ID: 28070691 [TBL] [Abstract][Full Text] [Related]
14. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration. Park H; Lim DJ; Lee SH; Park H J Biomed Nanotechnol; 2016 Nov; 12(11):2076-82. PubMed ID: 29364624 [TBL] [Abstract][Full Text] [Related]
15. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties. Wang S; Li Y; Zhao R; Jin T; Zhang L; Li X Int J Biol Macromol; 2017 Nov; 104(Pt A):708-715. PubMed ID: 28645765 [TBL] [Abstract][Full Text] [Related]
16. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642 [TBL] [Abstract][Full Text] [Related]
17. Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering. Wang W; Junior JRP; Nalesso PRL; Musson D; Cornish J; Mendonça F; Caetano GF; Bártolo P Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():759-770. PubMed ID: 30948113 [TBL] [Abstract][Full Text] [Related]
18. Characterization of novel akermanite:poly-ϵ-caprolactone scaffolds for human adipose-derived stem cells bone tissue engineering. Zanetti AS; McCandless GT; Chan JY; Gimble JM; Hayes DJ J Tissue Eng Regen Med; 2015 Apr; 9(4):389-404. PubMed ID: 23166107 [TBL] [Abstract][Full Text] [Related]
19. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration. Zhang X; Du X; Li D; Ao R; Yu B; Yu B J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]