These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30769865)

  • 21. A comparative proteomic analysis of engineered and bio synthesized silver nanoparticles on soybean seedlings.
    Mustafa G; Hasan M; Yamaguchi H; Hitachi K; Tsuchida K; Komatsu S
    J Proteomics; 2020 Jul; 224():103833. PubMed ID: 32450145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.).
    Ali S; Rizwan M; Hussain A; Zia Ur Rehman M; Ali B; Yousaf B; Wijaya L; Alyemeni MN; Ahmad P
    Plant Physiol Biochem; 2019 Jul; 140():1-8. PubMed ID: 31078051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene.
    Zhu J; Zou Z; Shen Y; Li J; Shi S; Han S; Zhan X
    Environ Pollut; 2019 Apr; 247():108-117. PubMed ID: 30669078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential sensitivity of light-harnessing photosynthetic events in wheat and sunflower to exogenously applied ionic and nanoparticulate silver.
    Pardha-Saradhi P; Shabnam N; Sharmila P; Ganguli AK; Kim H
    Chemosphere; 2018 Mar; 194():340-351. PubMed ID: 29220750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth and antioxidant defense responses of wheat seedlings to di-n-butyl phthalate and di (2-ethylhexyl) phthalate stress.
    Gao M; Dong Y; Zhang Z; Song W; Qi Y
    Chemosphere; 2017 Apr; 172():418-428. PubMed ID: 28092763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants.
    Hussain A; Ali S; Rizwan M; Zia Ur Rehman M; Javed MR; Imran M; Chatha SAS; Nazir R
    Environ Pollut; 2018 Nov; 242(Pt B):1518-1526. PubMed ID: 30144725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles.
    Hussain A; Ali S; Rizwan M; Rehman MZU; Qayyum MF; Wang H; Rinklebe J
    Ecotoxicol Environ Saf; 2019 May; 173():156-164. PubMed ID: 30771659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains.
    Hussain A; Rizwan M; Ali Q; Ali S
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7579-7588. PubMed ID: 30661166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomics reveals multiple effects of titanium dioxide and silver nanoparticles in the metabolism of turbot, Scophthalmus maximus.
    Araújo MJ; Sousa ML; Fonseca E; Felpeto AB; Martins JC; Vázquez M; Mallo N; Rodriguez-Lorenzo L; Quarato M; Pinheiro I; Turkina MV; López-Mayán JJ; Peña-Vázquez E; Barciela-Alonso MC; Spuch-Calvar M; Oliveira M; Bermejo-Barrera P; Cabaleiro S; Espiña B; Vasconcelos V; Campos A
    Chemosphere; 2022 Dec; 308(Pt 1):136110. PubMed ID: 36007739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Analysis of the Effect of Inorganic and Organic Chemicals with Silver Nanoparticles on Soybean under Flooding Stress.
    Hashimoto T; Mustafa G; Nishiuchi T; Komatsu S
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32075105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase.
    Larue C; Laurette J; Herlin-Boime N; Khodja H; Fayard B; Flank AM; Brisset F; Carriere M
    Sci Total Environ; 2012 Aug; 431():197-208. PubMed ID: 22684121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zno nanoparticles: improving photosynthesis, shoot development, and phyllosphere microbiome composition in tea plants.
    Chen H; Song Y; Wang Y; Wang H; Ding Z; Fan K
    J Nanobiotechnology; 2024 Jul; 22(1):389. PubMed ID: 38956645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant-Based Titanium Dioxide Nanoparticles Trigger Biochemical and Proteome Modifications in
    Satti SH; Raja NI; Ikram M; Oraby HF; Mashwani ZU; Mohamed AH; Singh A; Omar AA
    Molecules; 2022 Jul; 27(13):. PubMed ID: 35807519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior.
    López-Luna J; Silva-Silva MJ; Martinez-Vargas S; Mijangos-Ricardez OF; González-Chávez MC; Solís-Domínguez FA; Cuevas-Díaz MC
    Sci Total Environ; 2016 Sep; 565():941-950. PubMed ID: 26806072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings.
    Tripathi DK; Singh S; Singh S; Srivastava PK; Singh VP; Singh S; Prasad SM; Singh PK; Dubey NK; Pandey AC; Chauhan DK
    Plant Physiol Biochem; 2017 Jan; 110():167-177. PubMed ID: 27449300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metallic allies in drought resilience: Unveiling the influence of silver and zinc oxide nanoparticles on enhancing tomato (Solanum lycopersicum) resistance through oxidative stress regulation.
    Faisal M; Faizan M; Alatar AA
    Plant Physiol Biochem; 2024 Jul; 212():108722. PubMed ID: 38761543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant response to silver nanoparticles: a critical review.
    Siddiqi KS; Husen A
    Crit Rev Biotechnol; 2022 Nov; 42(7):973-990. PubMed ID: 34521281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification.
    Du W; Yang J; Peng Q; Liang X; Mao H
    Chemosphere; 2019 Jul; 227():109-116. PubMed ID: 30986592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress.
    Fercha A; Capriotti AL; Caruso G; Cavaliere C; Samperi R; Stampachiacchiere S; Laganà A
    J Proteomics; 2014 Aug; 108():238-57. PubMed ID: 24859728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination.
    He M; Zhu C; Dong K; Zhang T; Cheng Z; Li J; Yan Y
    BMC Plant Biol; 2015 Apr; 15():97. PubMed ID: 25888100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.