These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 30769930)

  • 1. NaCl Inhibits Citrinin and Stimulates
    Zhen Z; Xiong X; Liu Y; Zhang J; Wang S; Li L; Gao M
    Toxins (Basel); 2019 Feb; 11(2):. PubMed ID: 30769930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical optimization for Monacolin K and yellow pigment production and citrinin reduction by Monascus purpureus in solid-state fermentation.
    Jirasatid S; Nopharatana M; Kitsubun P; Vichitsoonthonkul T; Tongta A
    J Microbiol Biotechnol; 2013 Mar; 23(3):364-74. PubMed ID: 23462010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Frequency Magnetic Field of Appropriate Strengths Changed Secondary Metabolite Production and Na
    Xiong X; Zhen Z; Liu Y; Gao M; Wang S; Li L; Zhang J
    Bioelectromagnetics; 2020 May; 41(4):289-297. PubMed ID: 32220027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducing red pigment and inhibiting citrinin production by adding lanthanum(III) ion in Monascus purpureus fermentation.
    Liu HQ; Huang ZF; Yang SZ; Tian XF; Wu ZQ
    Appl Microbiol Biotechnol; 2021 Mar; 105(5):1905-1912. PubMed ID: 33576885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iTRAQ-Based Quantitative Proteomic Analysis Reveals Changes in Metabolite Biosynthesis in
    Zhang J; Liu Y; Li L; Gao M
    Toxins (Basel); 2018 Oct; 10(11):. PubMed ID: 30380661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of MpPhy reveals magnetoreception and photosensitivity involvement in secondary metabolites biosynthesis in Monascus purpureus.
    Xiong X; Liu Y; Zhang J; Wang S; Li L; Gao M
    J Photochem Photobiol B; 2021 Apr; 217():112164. PubMed ID: 33676287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening and identification of Monascus strains with high-yield monacolin K and undetectable citrinin by integration of HPLC analysis and pksCT and ctnA genes amplification.
    Li Z; Liu Y; Li Y; Lin F; Wu L
    J Appl Microbiol; 2020 Nov; 129(5):1410-1418. PubMed ID: 32357272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp.
    Pattanagul P; Pinthong R; Phianmongkhol A; Tharatha S
    Int J Food Microbiol; 2008 Aug; 126(1-2):20-3. PubMed ID: 18538878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of monacolin K, yellow pigments, and citrinin production capabilities of Monascus purpureus and Monascus ruber (Monascus pilosus).
    Lin TS; Chiu SH; Chen CC; Lin CH
    J Food Drug Anal; 2023 Mar; 31(1):85-94. PubMed ID: 37224553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome shuffling improves pigment and other bioactive compound production in Monascus purpureus.
    Ghosh S; Dam B
    Appl Microbiol Biotechnol; 2020 Dec; 104(24):10451-10463. PubMed ID: 33165660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU 568 under dioscorea medium through the mediation of pH value and ethanol addition.
    Lee CL; Hung HK; Wang JJ; Pan TM
    J Agric Food Chem; 2007 Aug; 55(16):6493-502. PubMed ID: 17636932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation.
    Yang J; Chen Q; Wang W; Hu J; Hu C
    J Biosci Bioeng; 2015 May; 119(5):564-9. PubMed ID: 25488498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a non-pigment producing Monascus purpureus mutant strain.
    Rasheva TV; Nedeva TS; Hallet JN; Kujumdzieva AV
    Antonie Van Leeuwenhoek; 2003; 83(4):333-40. PubMed ID: 12777069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological detoxification of Monascus purpureus pigments by heat-treated Saccharomyces cerevisiae.
    Davoudi Moghadam H; Shahidi F; Tabatabaei Yazdi F; Sarabi Jamab M; Eshaghi Z
    J Sci Food Agric; 2019 Jul; 99(9):4439-4444. PubMed ID: 30866050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Blue Light on the Production of Citrinin in
    Yang H; Wang X; Li Z; Guo Q; Yang M; Chen D; Wang C
    Toxins (Basel); 2019 Sep; 11(9):. PubMed ID: 31540336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of monacolin K, gamma-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601.
    Wang JJ; Lee CL; Pan TM
    J Ind Microbiol Biotechnol; 2003 Nov; 30(11):669-76. PubMed ID: 14625794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the distribution of citrinin biosynthesis related genes among Monascus species.
    Chen YP; Tseng CP; Chien IL; Wang WY; Liaw LL; Yuan GF
    J Agric Food Chem; 2008 Dec; 56(24):11767-72. PubMed ID: 19012408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of tyrosol and farnesol as inducer in pigment production by Monascus purpureus ATCC16365.
    Erkaya S; Arslan NP; Orak T; Esim N; Taskin M
    J Basic Microbiol; 2020 Aug; 60(8):669-678. PubMed ID: 32449551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence of metabolites in three phylogenetically close Monascus species (M. pilosus, M. ruber, and M. purpureus) based on secondary metabolite biosynthetic gene clusters.
    Higa Y; Kim YS; Altaf-Ul-Amin M; Huang M; Ono N; Kanaya S
    BMC Genomics; 2020 Oct; 21(1):679. PubMed ID: 32998685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor.
    Kongruang S
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):93-9. PubMed ID: 20814729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.