These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 30769957)

  • 1. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of the effect of melanin concentration on light-tissue interactions in transmittance and reflectance finger photoplethysmography.
    Al-Halawani R; Qassem M; Kyriacou PA
    Sci Rep; 2024 Apr; 14(1):8145. PubMed ID: 38584229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model.
    Chatterjee S; Budidha K; Kyriacou PA
    Physiol Meas; 2020 Sep; 41(8):084001. PubMed ID: 32585642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion.
    Chatterjee S; Abay TY; Phillips JP; Kyriacou PA
    J Biomed Opt; 2018 Jul; 23(7):1-11. PubMed ID: 29998648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multilayer Monte Carlo Analysis of Optical Interactions in Reflectance Neck Photoplethysmography.
    Patel Z; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():850-853. PubMed ID: 36085757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of photoplethysmographic signals and blood oxygen saturation values on healthy volunteers during cuff-induced hypoperfusion using a multimode PPG/SpO₂ sensor.
    Shafique M; Kyriacou PA; Pal SK
    Med Biol Eng Comput; 2012 Jun; 50(6):575-83. PubMed ID: 22555629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffuse transmittance visible spectroscopy using smartphone flashlight for photoplethysmography and vital signs measurements.
    Bachir W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123181. PubMed ID: 37506454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of reflectance photoplethysmography on detecting cuff-induced vascular occlusions.
    Abay TY; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():861-4. PubMed ID: 26736398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opto-physiological modeling applied to photoplethysmographic cardiovascular assessment.
    Hu S; Azorin-Peris V; Zheng J
    J Healthc Eng; 2013; 4(4):505-28. PubMed ID: 24287429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive monitoring by photoplethysmography.
    Sahni R
    Clin Perinatol; 2012 Sep; 39(3):573-83. PubMed ID: 22954270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into the origin of remote PPG signals in visible light and infrared.
    Moço AV; Stuijk S; de Haan G
    Sci Rep; 2018 May; 8(1):8501. PubMed ID: 29855610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of photoplethysmographic signals and blood oxygen saturation values obtained from human splanchnic organs using a fiber optic sensor.
    Hickey M; Samuels N; Randive N; Langford RM; Kyriacou PA
    J Clin Monit Comput; 2011 Aug; 25(4):245-55. PubMed ID: 21953382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free flap pulse oximetry utilizing reflectance photoplethysmography.
    Zaman T; Kyriacou PA; Pal SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4046-9. PubMed ID: 24110620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a multimode photoplethysmographic sensor during cuff-induced hypoperfusion.
    Shafique M; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1024-7. PubMed ID: 21096996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of photoplethysmography, laser doppler flowmetry and near infrared spectroscopy during induced thermal stress.
    Budidha K; Abay TY; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6417-20. PubMed ID: 26737761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive In Vivo Estimation of Blood-Glucose Concentration by Monte Carlo Simulation.
    Haque CA; Hossain S; Kwon TH; Kim KD
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Photoplethysmography Behind the Ear for Pulse Oximetry in Hypoxic Conditions with a Novel Device (SPYDR).
    Bradke B; Everman B
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32260393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.