These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 30770017)

  • 1. Relation between concentration fluctuations and dynamical heterogeneities in binary glass-forming liquids: A molecular dynamics simulation study.
    Müller N; Vogel M
    J Chem Phys; 2019 Feb; 150(6):064502. PubMed ID: 30770017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid.
    Puosi F; Jakse N; Pasturel A
    J Phys Condens Matter; 2018 Apr; 30(14):145701. PubMed ID: 29465041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics.
    Berthier L; Biroli G; Bouchaud JP; Kob W; Miyazaki K; Reichman DR
    J Chem Phys; 2007 May; 126(18):184503. PubMed ID: 17508807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the relevance of electrostatic interactions for the structural relaxation of ionic liquids: A molecular dynamics simulation study.
    Pal T; Vogel M
    J Chem Phys; 2019 Mar; 150(12):124501. PubMed ID: 30927876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MD simulations of charged binary mixtures reveal a generic relation between high- and low-temperature behavior.
    Hecht L; Horstmann R; Liebchen B; Vogel M
    J Chem Phys; 2021 Jan; 154(2):024501. PubMed ID: 33445919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common behaviors associated with the glass transitions of water-like models.
    Horstmann R; Vogel M
    J Chem Phys; 2017 Jul; 147(3):034505. PubMed ID: 28734288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural relaxation dynamics in binary glass-forming molecular liquids with ideal and complex mixing behavior.
    Wang LM; Tian Y; Liu R; Richert R
    J Phys Chem B; 2010 Mar; 114(10):3618-22. PubMed ID: 20178328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure effects on structure and dynamics of metallic glass-forming liquid.
    Hu YC; Guan PF; Wang Q; Yang Y; Bai HY; Wang WH
    J Chem Phys; 2017 Jan; 146(2):024507. PubMed ID: 28088136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations.
    Kim K; Saito S
    J Chem Phys; 2013 Mar; 138(12):12A506. PubMed ID: 23556757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple time scales hidden in heterogeneous dynamics of glass-forming liquids.
    Kim K; Saito S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):060501. PubMed ID: 19658463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glass Transition in Supercooled Liquids with Medium-Range Crystalline Order.
    Tah I; Sengupta S; Sastry S; Dasgupta C; Karmakar S
    Phys Rev Lett; 2018 Aug; 121(8):085703. PubMed ID: 30192617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of confinement on supercooled tetrahedral liquids.
    Horstmann R; P Sanjon E; Drossel B; Vogel M
    J Chem Phys; 2019 Jun; 150(21):214704. PubMed ID: 31176331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glass formation of a DMSO-water mixture probed with a photosynthetic pigment.
    Huerta-Viga A; Nguyen LL; Amirjalayer S; Sim JHN; Zhang Z; Tan HS
    Phys Chem Chem Phys; 2018 Jul; 20(26):17552-17556. PubMed ID: 29915826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length scales in glass-forming liquids and related systems: a review.
    Karmakar S; Dasgupta C; Sastry S
    Rep Prog Phys; 2016 Jan; 79(1):016601. PubMed ID: 26684508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power law relationship between diffusion coefficients in multi-component glass forming liquids.
    Parmar ADS; Sengupta S; Sastry S
    Eur Phys J E Soft Matter; 2018 Aug; 41(8):90. PubMed ID: 30078172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of asymmetric binary glass formers. II. Results from nuclear magnetic resonance spectroscopy.
    Bock D; Kahlau R; Pötzschner B; Körber T; Wagner E; Rössler EA
    J Chem Phys; 2014 Mar; 140(9):094505. PubMed ID: 24606366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.