These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 3077003)

  • 21. Origin of excitatory drive to a spinal locomotor network.
    Roberts A; Li WC; Soffe SR; Wolf E
    Brain Res Rev; 2008 Jan; 57(1):22-8. PubMed ID: 17825424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reorganization of the human central nervous system.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 2000 Oct; 19 Suppl 1():11-240. PubMed ID: 11252267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio rerio.
    Lee RK; Eaton RC
    J Comp Neurol; 1991 Feb; 304(1):34-52. PubMed ID: 2016411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord.
    Hartenstein V
    J Comp Neurol; 1993 Feb; 328(2):213-31. PubMed ID: 8423241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metamorphosis-induced changes in the coupling of spinal thoraco-lumbar motor outputs during swimming in Xenopus laevis.
    Beyeler A; Métais C; Combes D; Simmers J; Le Ray D
    J Neurophysiol; 2008 Sep; 100(3):1372-83. PubMed ID: 18596184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway.
    Li WC; Soffe SR; Roberts A
    J Neurophysiol; 2004 Aug; 92(2):895-904. PubMed ID: 15028739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developing descending neurons of the early Xenopus tail spinal cord in the caudal spinal cord of early Xenopus.
    Nordlander RH
    J Comp Neurol; 1984 Sep; 228(1):117-28. PubMed ID: 6480904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscarinic modulation of the trigemino-reticular pathway in lampreys.
    Le Ray D; Brocard F; Dubuc R
    J Neurophysiol; 2004 Aug; 92(2):926-38. PubMed ID: 15044522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuromodulation and developmental plasticity in the locomotor system of anuran amphibians during metamorphosis.
    Sillar KT; Combes D; Ramanathan S; Molinari M; Simmers J
    Brain Res Rev; 2008 Jan; 57(1):94-102. PubMed ID: 17900702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and neuromodulation of spinal locomotor networks in the metamorphosing frog.
    Rauscent A; Le Ray D; Cabirol-Pol MJ; Sillar KT; Simmers J; Combes D
    J Physiol Paris; 2006; 100(5-6):317-27. PubMed ID: 17629683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Role of the reticular formation in regulating movement. Several intrareticular mechanisms and functional properties of the reticulospinal system].
    Pavlasek Iu; Shaling M; Shtraus P
    Neirofiziologiia; 1984; 16(5):637-51. PubMed ID: 6514062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal Relationship of Ocular and Tail Segmental Movements Underlying Locomotor-Induced Gaze Stabilization During Undulatory Swimming in Larval Xenopus.
    Bacqué-Cazenave J; Courtand G; Beraneck M; Lambert FM; Combes D
    Front Neural Circuits; 2018; 12():95. PubMed ID: 30420798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation.
    van Mier P; Armstrong J; Roberts A
    Neuroscience; 1989; 32(1):113-26. PubMed ID: 2586744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus.
    Arshavsky YuI ; Orlovsky GN; Panchin YuV ; Roberts A; Soffe SR
    Trends Neurosci; 1993 Jun; 16(6):227-33. PubMed ID: 7688164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retinoic acid affects the organization of reticulospinal neurons in developing Xenopus.
    Manns M; Fritzsch B
    Neurosci Lett; 1992 May; 139(2):253-6. PubMed ID: 1608555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulation of the brainstem reticular formation evokes locomotor activity in embryonic chicken (in ovo).
    Valenzuela JI; Hasan SJ; Steeves JD
    Brain Res Dev Brain Res; 1990 Oct; 56(1):13-8. PubMed ID: 2279325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An early midbrain sensorimotor pathway is involved in the timely initiation and direction of swimming in the hatchling
    Larbi MC; Messa G; Jalal H; Koutsikou S
    Front Neural Circuits; 2022; 16():1027831. PubMed ID: 36619662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of Single, Possible CHX10 Hindbrain Neurons Turns Swimming On and Off in Young
    Li WC; Soffe SR
    Front Cell Neurosci; 2019; 13():47. PubMed ID: 30873004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of locomotor behavior in wild type and spastic (sp/sp) axolotls, Ambystoma mexicanum.
    Ide CF; Tompkins R
    J Exp Zool; 1975 Dec; 194(3):467-78. PubMed ID: 1202151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.