These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30770588)

  • 1. Magnetic digital microfluidics on a bioinspired surface for point-of-care diagnostics of infectious disease.
    Kanitthamniyom P; Zhang Y
    Electrophoresis; 2019 Feb; ():. PubMed ID: 30770588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic digital microfluidics - a review.
    Zhang Y; Nguyen NT
    Lab Chip; 2017 Mar; 17(6):994-1008. PubMed ID: 28220916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays.
    Zhang Y; Wang TH
    Adv Mater; 2013 Jun; 25(21):2903-8. PubMed ID: 23529938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets.
    Witters D; Knez K; Ceyssens F; Puers R; Lammertyn J
    Lab Chip; 2013 Jun; 13(11):2047-54. PubMed ID: 23609603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital Microfluidics Assisted Sealing of Individual Magnetic Particles in Femtoliter-Sized Reaction Wells for Single-Molecule Detection.
    Decrop D; Ruiz EP; Kumar PT; Tripodi L; Kokalj T; Lammertyn J
    Methods Mol Biol; 2017; 1547():85-101. PubMed ID: 28044289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based real-time feedback control of magnetic digital microfluidics by artificial intelligence-empowered rapid object detector for automated in vitro diagnostics.
    Tang Y; Duan F; Zhou A; Kanitthamniyom P; Luo S; Hu X; Jiang X; Vasoo S; Zhang X; Zhang Y
    Bioeng Transl Med; 2023 Jul; 8(4):e10428. PubMed ID: 37476053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic digital microfluidics: a droplet-based total analysis system.
    Kiani MJ; Dehghan A; Saadatbakhsh M; Jamali Asl S; Nouri NM; Pishbin E
    Lab Chip; 2023 Feb; 23(4):748-760. PubMed ID: 36606624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired programmable wettability arrays for droplets manipulation.
    Sun L; Bian F; Wang Y; Wang Y; Zhang X; Zhao Y
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4527-4532. PubMed ID: 32071202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic-surfactant-mediated electro-dewetting for digital microfluidics.
    Li J; Ha NS; Liu T'; van Dam RM; 'cj' Kim CJ
    Nature; 2019 Aug; 572(7770):507-510. PubMed ID: 31435058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-free digital microfluidic platform for detection of influenza a virus by using magnetic beads and electromagnetic forces.
    Lu PH; Ma YD; Fu CY; Lee GB
    Lab Chip; 2020 Feb; 20(4):789-797. PubMed ID: 31956865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D-printed modular magnetic digital microfluidic architecture for on-demand bioanalysis.
    Kanitthamniyom P; Zhou A; Feng S; Liu A; Vasoo S; Zhang Y
    Microsyst Nanoeng; 2020; 6():48. PubMed ID: 34567660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serial dilution via surface energy trap-assisted magnetic droplet manipulation.
    Zhang Y; Shin DJ; Wang TH
    Lab Chip; 2013 Dec; 13(24):4827-31. PubMed ID: 24162777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential capillarity-assisted particle assembly in a microfluidic channel.
    Pioli R; Fernandez-Rodriguez MA; Grillo F; Alvarez L; Stocker R; Isa L; Secchi E
    Lab Chip; 2021 Mar; 21(5):888-895. PubMed ID: 33427254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in magnetic digital microfluidic platforms.
    Cheng H; Liu H; Li W; Li M
    Electrophoresis; 2021 Nov; 42(21-22):2329-2346. PubMed ID: 34196022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Colloidal Self-Assembly for Functional Materials.
    Hou S; Bai L; Lu D; Duan H
    Acc Chem Res; 2023 Apr; 56(7):740-751. PubMed ID: 36920352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile actuation of aqueous droplets on a superhydrophobic surface using magnetotactic bacteria for digital microfluidic applications.
    Rismani Yazdi S; Agrawal P; Morales E; Stevens CA; Oropeza L; Davies PL; Escobedo C; Oleschuk RD
    Anal Chim Acta; 2019 Nov; 1085():107-116. PubMed ID: 31522724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet microfluidics.
    Teh SY; Lin R; Hung LH; Lee AP
    Lab Chip; 2008 Feb; 8(2):198-220. PubMed ID: 18231657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Full-Range Droplet Actuation for Inkjet-Printed Digital Microfluidic Chip on Flexible Substrates.
    Wang H; Chen L
    IEEE Trans Nanobioscience; 2022 Jan; 21(1):10-20. PubMed ID: 34529569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging.
    Zhang H; Guzman AR; Wippold JA; Li Y; Dai J; Huang C; Han A
    Lab Chip; 2020 Nov; 20(21):3948-3959. PubMed ID: 32935710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convenient surface functionalization of whole-Teflon chips with polydopamine coating.
    Shen B; Xiong B; Wu H
    Biomicrofluidics; 2015 Jul; 9(4):044111. PubMed ID: 26339312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.