These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30770848)

  • 1. Spring Based Connection of External Wires to a Thin Film Temperature Sensor Integrated Inside a Solid Oxide Fuel Cell.
    Guk E; Venkatesan V; Sayan Y; Jackson L; Kim JS
    Sci Rep; 2019 Feb; 9(1):2161. PubMed ID: 30770848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode.
    Guk E; Ranaweera M; Venkatesan V; Kim JS
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27563893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin Atomic Layer-Deposited CeO
    Shin JW; Oh S; Lee S; Yu JG; Park J; Go D; Yang BC; Kim HJ; An J
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46651-46657. PubMed ID: 31697463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive investigation of direct ammonia-fueled thin-film solid-oxide fuel cells: Performance, limitation, and prospects.
    Oh S; Oh MJ; Hong J; Yoon KJ; Ji HI; Lee JH; Kang H; Son JW; Yang S
    iScience; 2022 Sep; 25(9):105009. PubMed ID: 36105594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured thin solid oxide fuel cells with high power density.
    Ignatiev A; Chen X; Wu N; Lu Z; Smith L
    Dalton Trans; 2008 Oct; (40):5501-6. PubMed ID: 19082034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition.
    Montanini R; Quattrocchi A; Piccolo SA; Amato A; Trocino S; Zignani SC; Faro ML; Squadrito G
    Appl Opt; 2016 Sep; 55(25):7142-8. PubMed ID: 27607294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric sensitivity analysis for a natural gas fueled high temperature tubular solid oxide fuel cell.
    Kalra P; Garg RK; Kumar A
    Heliyon; 2020 Jul; 6(7):e04450. PubMed ID: 32760822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.
    Yu CC; Baek JD; Su CH; Fan L; Wei J; Liao YC; Su PC
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10343-9. PubMed ID: 27045453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved solid oxide fuel cell performance with nanostructured electrolytes.
    Chao CC; Hsu CM; Cui Y; Prinz FB
    ACS Nano; 2011 Jul; 5(7):5692-6. PubMed ID: 21657222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.
    Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA
    Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermediate temperature solid oxide fuel cells.
    Brett DJ; Atkinson A; Brandon NP; Skinner SJ
    Chem Soc Rev; 2008 Aug; 37(8):1568-78. PubMed ID: 18648682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The need for nano-scale modeling in solid oxide fuel cells.
    Ryan EM; Recknagle KP; Liu W; Khaleel MA
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6758-68. PubMed ID: 22962819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the Cathode-Electrolyte Interface with Nanoparticles for Boosting the Solid Oxide Fuel Cell Performance of Chemically Stable Proton-Conducting Electrolytes.
    Bi L; Shafi SP; Da'as EH; Traversa E
    Small; 2018 Aug; 14(32):e1801231. PubMed ID: 29931743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of ScSZ/GDC bilayer thin film electrolyte for anodic aluminum oxide supported low temperature solid oxide fuel cells.
    Cho GY; Kim Y; Hong SW; Yu W; Kim YB; Cha SW
    Nanotechnology; 2018 Aug; 29(34):345401. PubMed ID: 29708505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ electrochemical impedance analysis of a commercial SOFC stack fueled by real wood gas.
    Torrigino F; Grimm F; Karl J; Herkendell K
    Heliyon; 2024 Jun; 10(12):e32509. PubMed ID: 38952384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hot-film air flow sensor for elevated temperatures.
    Balakrishnan V; Dinh T; Nguyen T; Phan HP; Nguyen TK; Dao DV; Nguyen NT
    Rev Sci Instrum; 2019 Jan; 90(1):015007. PubMed ID: 30709194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermo-Electro-Chemo-Mechanical Coupled Modeling of Solid Oxide Fuel Cell with LSCF-GDC Composite Cathode.
    Cai W; Zheng Q; Yuan J; Yu W; Yin Z; Wu Y; Zhang Z
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Temperature and Hydrogen Sensors with MEMS Technology.
    Jiang H; Huang M; Yu Y; Tian X; Zhao X; Zhang W; Zhang J; Huang Y; Yu K
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29301220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper Oxide Solution Sensor Formed on a Thin Film Having Nanowires for Detecting Ethanol in Water.
    Kimura Y; Tohmyoh H
    Langmuir; 2022 Sep; 38(38):11573-11580. PubMed ID: 36112469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.