These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30771010)

  • 21. Dispersive liquid-liquid microextraction combined with gas chromatography-electron capture detection for the determination of polychlorinated biphenyls in soils.
    Hu J; Fu L; Zhao X; Liu X; Wang H; Wang X; Dai L
    Anal Chim Acta; 2009 Apr; 640(1-2):100-5. PubMed ID: 19362627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative determination of trace phenazopyridine in human urine samples by hyphenation of dispersive solid-phase extraction and liquid-phase microextraction followed by gas chromatography/mass spectrometry analysis.
    Seidi S; Mohammadi F; Tajik M; Baharfar M; Mohammadi A; Otoufat T
    J Sep Sci; 2020 Jul; 43(14):2897-2904. PubMed ID: 32396240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated in-syringe magnetic sheet solid-phase extraction and dispersive liquid-liquid microextraction for determination of aflatoxins in fresh and moldy breads.
    Sereshti H; Khodayari F; Nouri N
    J Sci Food Agric; 2020 Feb; 100(3):1048-1055. PubMed ID: 31677164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish.
    Ghasemzadeh-Mohammadi V; Mohammadi A; Hashemi M; Khaksar R; Haratian P
    J Chromatogr A; 2012 May; 1237():30-6. PubMed ID: 22483095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vortex-assisted micro-solid-phase extraction followed by low-density solvent based dispersive liquid-liquid microextraction for the fast and efficient determination of phthalate esters in river water samples.
    Guo L; Lee HK
    J Chromatogr A; 2013 Jul; 1300():24-30. PubMed ID: 23374370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the determination of nitro musks in surface water and wastewater samples.
    López-Nogueroles M; Chisvert A; Salvador A; Carretero A
    Talanta; 2011 Sep; 85(4):1990-5. PubMed ID: 21872049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid Analysis of Acrylamide in Tap and Well Water Samples by Solvent Terminated Dispersive Liquid-Liquid Microextraction Followed by GC-FID.
    Sayah M; Kiarostami V
    Bull Environ Contam Toxicol; 2019 Apr; 102(4):560-566. PubMed ID: 30859246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of continuous dispersive liquid-liquid microextraction performed in home-made device for extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Mohebbi A; Feriduni B
    Anal Chim Acta; 2016 May; 920():1-9. PubMed ID: 27114217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid-phase extraction combined with dispersive liquid-liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples.
    Fattahi N; Samadi S; Assadi Y; Hosseini MR
    J Chromatogr A; 2007 Oct; 1169(1-2):63-9. PubMed ID: 17900597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preconcentration of organochlorine pesticides in aqueous samples by dispersive liquid-liquid microextraction based on solidification of floating organic drop after SPE with multiwalled carbon nanotubes.
    Mirzaei M; Rakh M
    J Sep Sci; 2014 Jan; 37(1-2):114-9. PubMed ID: 24288158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Riboflavin as a green sorbent in dispersive micro-solid-phase extraction of several pesticides from fruit juices combined with dispersive liquid-liquid microextraction.
    Abbasalizadeh A; Sorouraddin SM; Farajzadeh MA; Marzi E; Afshar Mogaddam MR
    J Sep Sci; 2022 May; 45(9):1550-1559. PubMed ID: 35220687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a new microextraction method based on elevated temperature dispersive liquid-liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection.
    Mogaddam MR; Farajzadeh MA; Ghorbanpour H
    J Chromatogr A; 2014 Jun; 1347():8-16. PubMed ID: 24819020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dispersive liquid-liquid microextraction followed by reversed phase HPLC for the determination of decabrominated diphenyl ether in natural water.
    Li Y; Hu J; Liu X; Fu L; Zhang X; Wang X
    J Sep Sci; 2008 Jul; 31(13):2371-6. PubMed ID: 18646259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersive liquid-liquid microextraction: trends in the analysis of biological samples.
    Zuloaga O; Olivares M; Navarro P; Vallejo A; Prieto A
    Bioanalysis; 2015; 7(17):2211-25. PubMed ID: 26395171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of atranol and chloroatranol in perfumes using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry.
    López-Nogueroles M; Chisvert A; Salvador A
    Anal Chim Acta; 2014 May; 826():28-34. PubMed ID: 24793850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Centrifuge-free dispersive liquid-liquid microextraction coupled with thin-film microextraction for the preconcentration of molinate in real samples by ion mobility spectrometry.
    Heidarbeigi M; Jafari MT; Saraji M
    Talanta; 2021 Apr; 225():122027. PubMed ID: 33592756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dispersive liquid-liquid microextraction for the determination of organochlorine pesticides residues in honey by gas chromatography-electron capture and ion trap mass spectrometric detection.
    Zacharis CK; Rotsias I; Zachariadis PG; Zotos A
    Food Chem; 2012 Oct; 134(3):1665-72. PubMed ID: 25005997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecularly imprinted-solid phase extraction combined with simultaneous derivatization and dispersive liquid-liquid microextraction for selective extraction and preconcentration of methamphetamine and ecstasy from urine samples followed by gas chromatography.
    Djozan D; Farajzadeh MA; Sorouraddin SM; Baheri T
    J Chromatogr A; 2012 Jul; 1248():24-31. PubMed ID: 22704883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of endocrine-disrupting compounds in water samples by magnetic nanoparticle-assisted dispersive liquid-liquid microextraction combined with gas chromatography-tandem mass spectrometry.
    Pérez RA; Albero B; Tadeo JL; Sánchez-Brunete C
    Anal Bioanal Chem; 2016 Nov; 408(28):8013-8023. PubMed ID: 27614975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.