These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 30771014)
1. Determination of the activity of uracil-DNA glycosylase by using two-tailed reverse transcription PCR and gold nanoparticle-mediated silver nanocluster fluorescence: a new method for gene therapy-related enzyme detection. Zhang K; Huang W; Huang Y; Wang K; Zhu X; Xie M Mikrochim Acta; 2019 Feb; 186(3):181. PubMed ID: 30771014 [TBL] [Abstract][Full Text] [Related]
2. Electrochemiluminescent determination of the activity of uracil-DNA glycosylase: Combining nicking enzyme assisted signal amplification and catalyzed hairpin assembly. Liu Q; Liu C; Zhu G; Xu H; Zhang XJ; Hu C; Xie Y; Zhang K; Wang H Mikrochim Acta; 2019 Feb; 186(3):179. PubMed ID: 30771006 [TBL] [Abstract][Full Text] [Related]
3. A novel analytical principle using AP site-mediated T7 RNA polymerase transcription regulation for sensing uracil-DNA glycosylase activity. Gao W; Xu J; Lian G; Wang X; Gong X; Zhou D; Chang J Analyst; 2020 Jun; 145(12):4321-4327. PubMed ID: 32432603 [TBL] [Abstract][Full Text] [Related]
4. Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase. Wang LJ; Ren M; Zhang Q; Tang B; Zhang CY Anal Chem; 2017 Apr; 89(8):4488-4494. PubMed ID: 28306242 [TBL] [Abstract][Full Text] [Related]
5. Terminal Deoxynucleotidyl Transferase and T7 Exonuclease-Aided Amplification Strategy for Ultrasensitive Detection of Uracil-DNA Glycosylase. Du YC; Cui YX; Li XY; Sun GY; Zhang YP; Tang AN; Kim K; Kong DM Anal Chem; 2018 Jul; 90(14):8629-8634. PubMed ID: 29911858 [TBL] [Abstract][Full Text] [Related]
6. Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles. Borghei YS; Hosseini M; Ganjali MR; Ju H Mikrochim Acta; 2018 May; 185(6):286. PubMed ID: 29737423 [TBL] [Abstract][Full Text] [Related]
7. Fluorometric determination of the activity of uracil-DNA glycosylase by using graphene oxide and exonuclease I assisted signal amplification. Chen M; Li W; Ma C; Wu K; He H; Wang K Mikrochim Acta; 2019 Jan; 186(2):110. PubMed ID: 30637581 [TBL] [Abstract][Full Text] [Related]
8. Self-primer and self-template recycle rolling circle amplification strategy for sensitive detection of uracil-DNA glycosylase activity. Zhang P; Wang L; Zhao H; Xu X; Jiang W Anal Chim Acta; 2018 Feb; 1001():119-124. PubMed ID: 29291794 [TBL] [Abstract][Full Text] [Related]
9. Base excision repair initiated rolling circle amplification-based fluorescent assay for screening uracil-DNA glycosylase activity using Endo IV-assisted cleavage of AP probes. Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Huang J Analyst; 2018 Aug; 143(16):3951-3958. PubMed ID: 29999513 [TBL] [Abstract][Full Text] [Related]
10. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities. Wu Y; Yan P; Xu X; Jiang W Analyst; 2016 Mar; 141(5):1789-95. PubMed ID: 26899234 [TBL] [Abstract][Full Text] [Related]
11. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity. Wu Y; Wang L; Jiang W Biosens Bioelectron; 2017 Mar; 89(Pt 2):984-988. PubMed ID: 27825529 [TBL] [Abstract][Full Text] [Related]
12. Sensitive detection of uracil-DNA glycosylase (UDG) activity based on terminal deoxynucleotidyl transferase-assisted formation of fluorescent copper nanoclusters (CuNCs). Liu G; He W; Liu C Talanta; 2019 Apr; 195():320-326. PubMed ID: 30625549 [TBL] [Abstract][Full Text] [Related]
13. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria. Leng X; Wang Y; Li R; Liu S; Yao J; Pei Q; Cui X; Tu Y; Tang D; Huang J Mikrochim Acta; 2018 Feb; 185(3):168. PubMed ID: 29594727 [TBL] [Abstract][Full Text] [Related]
14. Base excision repair mediated cascading triple-signal amplification for the sensitive detection of human alkyladenine DNA glycosylase. Zhang H; Wang L; Xie Y; Zuo X; Chen H; Chen X Analyst; 2019 May; 144(9):3064-3071. PubMed ID: 30916676 [TBL] [Abstract][Full Text] [Related]
15. Fluorometric determination of mercury(II) using positively charged gold nanoparticles, DNA-templated silver nanoclusters, T-Hg(II)-T interaction and exonuclease assisted signal amplification. Ma H; Xue N; Wu S; Li Z; Miao X Mikrochim Acta; 2019 May; 186(5):317. PubMed ID: 31049707 [TBL] [Abstract][Full Text] [Related]
16. A label-free and highly sensitive strategy for uracil-DNA glycosylase activity detection based on stem-loop primer-mediated exponential amplification (SPEA). Du W; Li J; Xiao F; Yu R; Jiang J Anal Chim Acta; 2017 Oct; 991():127-132. PubMed ID: 29031294 [TBL] [Abstract][Full Text] [Related]
17. Fluorometric determination of microRNA using arched probe-mediated isothermal exponential amplification combined with DNA-templated silver nanoclusters. Wu H; Wu J; Liu Y; Wang H; Zou P Mikrochim Acta; 2019 Oct; 186(11):715. PubMed ID: 31654142 [TBL] [Abstract][Full Text] [Related]
18. Target-triggered activation of rolling circle amplification for label-free and sensitive fluorescent uracil-DNA glycosylase activity detection and inhibition. Yang F; Li X; Li J; Xiang Y; Yuan R Talanta; 2019 Nov; 204():812-816. PubMed ID: 31357368 [TBL] [Abstract][Full Text] [Related]
19. Coupling photoelectrochemical and electrochemical strategies in one probe electrode: Toward sensitive and reliable dual-signal bioassay for uracil-DNA glycosylase activity. Lu Y; Zhao H; Fan GC; Luo X Biosens Bioelectron; 2019 Oct; 142():111569. PubMed ID: 31404881 [TBL] [Abstract][Full Text] [Related]
20. Enzyme-catalyzed assembly of gold nanoparticles for visualized screening of DNA base excision repair. Nguyen VT; Le DV; Nie C; Zhou DM; Wang YZ; Tang LJ; Jiang JH; Yu RQ Talanta; 2012 Oct; 100():303-7. PubMed ID: 23141341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]