These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30771210)

  • 1. Recent advances in the pathogenesis of microvascular complications in diabetes.
    Park S; Kang HJ; Jeon JH; Kim MJ; Lee IK
    Arch Pharm Res; 2019 Mar; 42(3):252-262. PubMed ID: 30771210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular targets of diabetic cardiovascular complications.
    Ahmad FK; He Z; King GL
    Curr Drug Targets; 2005 Jun; 6(4):487-94. PubMed ID: 16026267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cellular and molecular mechanisms of diabetic complications.
    King GL; Brownlee M
    Endocrinol Metab Clin North Am; 1996 Jun; 25(2):255-70. PubMed ID: 8799700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular complexities underlying the vascular complications of diabetes mellitus - A comprehensive review.
    Paul S; Ali A; Katare R
    J Diabetes Complications; 2020 Aug; 34(8):107613. PubMed ID: 32505477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and molecular mechanisms of vascular injury in diabetes--part I: pathways of vascular disease in diabetes.
    Madonna R; De Caterina R
    Vascul Pharmacol; 2011; 54(3-6):68-74. PubMed ID: 21453786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of protein kinase C activation and the vascular complications of diabetes.
    Das Evcimen N; King GL
    Pharmacol Res; 2007 Jun; 55(6):498-510. PubMed ID: 17574431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a "glycoxidation-centric" point of view.
    Chilelli NC; Burlina S; Lapolla A
    Nutr Metab Cardiovasc Dis; 2013 Oct; 23(10):913-9. PubMed ID: 23786818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients.
    Babizhayev MA; Strokov IA; Nosikov VV; Savel'yeva EL; Sitnikov VF; Yegorov YE; Lankin VZ
    Cell Biochem Biophys; 2015 Apr; 71(3):1425-43. PubMed ID: 25427889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNAs: potential mediators and biomarkers of diabetic complications.
    Kato M; Castro NE; Natarajan R
    Free Radic Biol Med; 2013 Sep; 64():85-94. PubMed ID: 23770198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Oxidative Stress and Mitochondrial Dysfunction during the Pathogenesis of Diabetic Retinopathy.
    Wu MY; Yiang GT; Lai TT; Li CJ
    Oxid Med Cell Longev; 2018; 2018():3420187. PubMed ID: 30254714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress.
    Rolo AP; Palmeira CM
    Toxicol Appl Pharmacol; 2006 Apr; 212(2):167-78. PubMed ID: 16490224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of complement and complement regulatory proteins in the complications of diabetes.
    Ghosh P; Sahoo R; Vaidya A; Chorev M; Halperin JA
    Endocr Rev; 2015 Jun; 36(3):272-88. PubMed ID: 25859860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperglycemia and the pathobiology of diabetic complications.
    Aronson D
    Adv Cardiol; 2008; 45():1-16. PubMed ID: 18230953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets.
    Farhangkhoee H; Khan ZA; Kaur H; Xin X; Chen S; Chakrabarti S
    Pharmacol Ther; 2006 Aug; 111(2):384-99. PubMed ID: 16343639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches.
    Madonna R; Balistreri CR; Geng YJ; De Caterina R
    Vascul Pharmacol; 2017 Mar; 90():1-7. PubMed ID: 28137665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Glycation Angle to Look into the Diabetic Vasculopathy: Cause and Cure.
    Ahmad S; Siddiqui Z; Rehman S; Khan MY; Khan H; Khanum S; Alouffi S; Saeed M
    Curr Vasc Pharmacol; 2017; 15(4):352-364. PubMed ID: 28356033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement.
    Barrett EJ; Liu Z; Khamaisi M; King GL; Klein R; Klein BEK; Hughes TM; Craft S; Freedman BI; Bowden DW; Vinik AI; Casellini CM
    J Clin Endocrinol Metab; 2017 Dec; 102(12):4343-4410. PubMed ID: 29126250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food-advanced glycation end products aggravate the diabetic vascular complications via modulating the AGEs/RAGE pathway.
    Lv X; Lv GH; Dai GY; Sun HM; Xu HQ
    Chin J Nat Med; 2016 Nov; 14(11):844-855. PubMed ID: 27914528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diabetic vascular disease: it's all the RAGE.
    Hudson BI; Wendt T; Bucciarelli LG; Rong LL; Naka Y; Yan SF; Schmidt AM
    Antioxid Redox Signal; 2005; 7(11-12):1588-600. PubMed ID: 16356122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity.
    Oelze M; Kröller-Schön S; Welschof P; Jansen T; Hausding M; Mikhed Y; Stamm P; Mader M; Zinßius E; Agdauletova S; Gottschlich A; Steven S; Schulz E; Bottari SP; Mayoux E; Münzel T; Daiber A
    PLoS One; 2014; 9(11):e112394. PubMed ID: 25402275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.