These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1064 related articles for article (PubMed ID: 30771257)
81. A deep learning classifier for digital breast tomosynthesis. Ricciardi R; Mettivier G; Staffa M; Sarno A; Acampora G; Minelli S; Santoro A; Antignani E; Orientale A; Pilotti IAM; Santangelo V; D'Andria P; Russo P Phys Med; 2021 Mar; 83():184-193. PubMed ID: 33798904 [TBL] [Abstract][Full Text] [Related]
82. Impact of Image Enhancement Module for Analysis of Mammogram Images for Diagnostics of Breast Cancer. Almalki YE; Soomro TA; Irfan M; Alduraibi SK; Ali A Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271015 [TBL] [Abstract][Full Text] [Related]
83. A Novel Internet of Things Framework Integrated with Real Time Monitoring for Intelligent Healthcare Environment. Suresh A; Udendhran R; Balamurgan M; Varatharajan R J Med Syst; 2019 May; 43(6):165. PubMed ID: 31053963 [TBL] [Abstract][Full Text] [Related]
84. Replacing single-view mediolateral oblique (MLO) digital mammography (DM) with synthesized mammography (SM) with digital breast tomosynthesis (DBT) images: Comparison of the diagnostic performance and radiation dose with two-view DM with or without MLO-DBT. Kang HJ; Chang JM; Lee J; Song SE; Shin SU; Kim WH; Bae MS; Moon WK Eur J Radiol; 2016 Nov; 85(11):2042-2048. PubMed ID: 27776658 [TBL] [Abstract][Full Text] [Related]
85. Deep Learning in Mammography: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer. Becker AS; Marcon M; Ghafoor S; Wurnig MC; Frauenfelder T; Boss A Invest Radiol; 2017 Jul; 52(7):434-440. PubMed ID: 28212138 [TBL] [Abstract][Full Text] [Related]
86. Hybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images. Wang Y; Zhou C; Chan HP; Hadjiiski LM; Chughtai A; Kazerooni EA Med Phys; 2022 Nov; 49(11):7287-7302. PubMed ID: 35717560 [TBL] [Abstract][Full Text] [Related]
87. Computer-aided detection of breast masses: four-view strategy for screening mammography. Wei J; Chan HP; Zhou C; Wu YT; Sahiner B; Hadjiiski LM; Roubidoux MA; Helvie MA Med Phys; 2011 Apr; 38(4):1867-76. PubMed ID: 21626920 [TBL] [Abstract][Full Text] [Related]
88. Improvements of an objective model of compressed breasts undergoing mammography: Generation and characterization of breast shapes. Rodríguez-Ruiz A; Feng SSJ; van Zelst J; Vreemann S; Mann JR; D'Orsi CJ; Sechopoulos I Med Phys; 2017 Jun; 44(6):2161-2172. PubMed ID: 28244109 [TBL] [Abstract][Full Text] [Related]
89. Automated classification of clustered microcalcifications into malignant and benign types. Veldkamp WJ; Karssemeijer N; Otten JD; Hendriks JH Med Phys; 2000 Nov; 27(11):2600-8. PubMed ID: 11128313 [TBL] [Abstract][Full Text] [Related]
90. Segmentation of mammograms using multiple linked self-organizing neural networks. Suckling J; Dance DR; Moskovic E; Lewis DJ; Blacker SG Med Phys; 1995 Feb; 22(2):145-52. PubMed ID: 7565345 [TBL] [Abstract][Full Text] [Related]
91. Mammographic positioning: evaluation from the view box. Bassett LW; Hirbawi IA; DeBruhl N; Hayes MK Radiology; 1993 Sep; 188(3):803-6. PubMed ID: 8351351 [TBL] [Abstract][Full Text] [Related]
92. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier. Treder M; Lauermann JL; Eter N Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2053-2060. PubMed ID: 30091055 [TBL] [Abstract][Full Text] [Related]
93. Measures of divergence of oriented patterns for the detection of architectural distortion in prior mammograms. Rangayyan RM; Banik S; Chakraborty J; Mukhopadhyay S; Desautels JE Int J Comput Assist Radiol Surg; 2013 Jul; 8(4):527-45. PubMed ID: 23054747 [TBL] [Abstract][Full Text] [Related]
94. Automated iterative neutrosophic lung segmentation for image analysis in thoracic computed tomography. Guo Y; Zhou C; Chan HP; Chughtai A; Wei J; Hadjiiski LM; Kazerooni EA Med Phys; 2013 Aug; 40(8):081912. PubMed ID: 23927326 [TBL] [Abstract][Full Text] [Related]
95. Classification of Mammographic Breast Microcalcifications Using a Deep Convolutional Neural Network: A BI-RADS-Based Approach. Schönenberger C; Hejduk P; Ciritsis A; Marcon M; Rossi C; Boss A Invest Radiol; 2021 Apr; 56(4):224-231. PubMed ID: 33038095 [TBL] [Abstract][Full Text] [Related]
96. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825 [TBL] [Abstract][Full Text] [Related]
97. Deep learning with ultrasonography: automated classification of liver fibrosis using a deep convolutional neural network. Lee JH; Joo I; Kang TW; Paik YH; Sinn DH; Ha SY; Kim K; Choi C; Lee G; Yi J; Bang WC Eur Radiol; 2020 Feb; 30(2):1264-1273. PubMed ID: 31478087 [TBL] [Abstract][Full Text] [Related]
98. Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network. Jung H; Kim B; Lee I; Yoo M; Lee J; Ham S; Woo O; Kang J PLoS One; 2018; 13(9):e0203355. PubMed ID: 30226841 [TBL] [Abstract][Full Text] [Related]
99. Accurate segmentation of the breast region from digitized mammograms. Ojala T; Näppi J; Nevalainen O Comput Med Imaging Graph; 2001; 25(1):47-59. PubMed ID: 11120407 [TBL] [Abstract][Full Text] [Related]
100. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling. Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]