These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30771407)

  • 1. Do theta oscillations explain the somatosensory change detection mechanism?
    Zhang Z; Guo G; Zhang J; Li C; Huang Q; Fukuyama H; Funahashi S; Yan T; Wu J
    Biol Psychol; 2019 Apr; 143():103-112. PubMed ID: 30771407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theta oscillation related to the auditory discrimination process in mismatch negativity: oddball versus control paradigm.
    Ko D; Kwon S; Lee GT; Im CH; Kim KH; Jung KY
    J Clin Neurol; 2012 Mar; 8(1):35-42. PubMed ID: 22523511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The third-stimulus temporal discrimination threshold: focusing on the temporal processing of sensory input within primary somatosensory cortex.
    Leodori G; Formica A; Zhu X; Conte A; Belvisi D; Cruccu G; Hallett M; Berardelli A
    J Neurophysiol; 2017 Oct; 118(4):2311-2317. PubMed ID: 28747470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study.
    Restuccia D; Della Marca G; Valeriani M; Leggio MG; Molinari M
    Brain; 2007 Jan; 130(Pt 1):276-87. PubMed ID: 16982654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cervical dystonia: Normal auditory mismatch negativity and abnormal somatosensory mismatch negativity.
    Chen JC; Macerollo A; Sadnicka A; Lu MK; Tsai CH; Korlipara P; Bhatia K; Rothwell JC; Edwards MJ
    Clin Neurophysiol; 2018 Sep; 129(9):1947-1954. PubMed ID: 30015084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theta oscillation during auditory change detection: An MEG study.
    Hsiao FJ; Wu ZA; Ho LT; Lin YY
    Biol Psychol; 2009 Apr; 81(1):58-66. PubMed ID: 19428969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fronto-temporal interactions in the theta-band during auditory deviant processing.
    Choi JW; Lee JK; Ko D; Lee GT; Jung KY; Kim KH
    Neurosci Lett; 2013 Aug; 548():120-5. PubMed ID: 23769731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theta EEG oscillatory activity and auditory change detection.
    Fuentemilla L; Marco-Pallarés J; Münte TF; Grau C
    Brain Res; 2008 Jul; 1220():93-101. PubMed ID: 18076870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia.
    Javitt DC; Lee M; Kantrowitz JT; Martinez A
    Schizophr Res; 2018 Jan; 191():51-60. PubMed ID: 28666633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orienting response and frontal midline theta activity: a somatosensory spectral perturbation study.
    Dietl T; Dirlich G; Vogl L; Lechner C; Strian F
    Clin Neurophysiol; 1999 Jul; 110(7):1204-9. PubMed ID: 10423186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient inhibition of the cerebellum impairs change-detection processes: Cerebellar contributions to sensorimotor integration.
    Andrew D; Ibey RJ; Staines WR
    Behav Brain Res; 2020 Jan; 378():112273. PubMed ID: 31589895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. U-shaped Relation between Prestimulus Alpha-band and Poststimulus Gamma-band Power in Temporal Tactile Perception in the Human Somatosensory Cortex.
    Wittenberg MA; Baumgarten TJ; Schnitzler A; Lange J
    J Cogn Neurosci; 2018 Apr; 30(4):552-564. PubMed ID: 29244637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurophysiological correlates of abnormal somatosensory temporal discrimination in dystonia.
    Antelmi E; Erro R; Rocchi L; Liguori R; Tinazzi M; Di Stasio F; Berardelli A; Rothwell JC; Bhatia KP
    Mov Disord; 2017 Jan; 32(1):141-148. PubMed ID: 27671708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Body representations as indexed by oscillatory EEG activities in the context of tactile novelty processing.
    Shen G; Meltzoff AN; Marshall PJ
    Neuropsychologia; 2019 Sep; 132():107144. PubMed ID: 31319120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillatory characteristics of the visual mismatch negativity: what evoked potentials aren't telling us.
    Stothart G; Kazanina N
    Front Hum Neurosci; 2013; 7():426. PubMed ID: 23914168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Basis of Early Somatosensory Change Detection: A Magnetoencephalography Study.
    Naeije G; Vaulet T; Wens V; Marty B; Goldman S; De Tiège X
    Brain Topogr; 2018 Mar; 31(2):242-256. PubMed ID: 28913778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of a weak somatosensory stimulus: role of the prestimulus mu rhythm and its top-down modulation.
    Zhang Y; Ding M
    J Cogn Neurosci; 2010 Feb; 22(2):307-22. PubMed ID: 19400673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatosensory mismatch negativity in healthy children.
    Restuccia D; Zanini S; Cazzagon M; Del Piero I; Martucci L; Della Marca G
    Dev Med Child Neurol; 2009 Dec; 51(12):991-8. PubMed ID: 19909309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using somatosensory mismatch responses as a window into somatotopic processing of tactile stimulation.
    Shen G; Smyk NJ; Meltzoff AN; Marshall PJ
    Psychophysiology; 2018 May; 55(5):e13030. PubMed ID: 29139557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task.
    Chen Y; Huang X; Luo Y; Peng C; Liu C
    Brain Res; 2010 Apr; 1325():100-11. PubMed ID: 20170647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.