These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30771633)

  • 1. Efficient and rapid removal of EDTA-chelated Pb(II) by the Fe(III)/flue gas desulfurization gypsum (FGDG) system.
    Li R; Li Q; Sun X; Li J; Shen J; Han W; Wang L
    J Colloid Interface Sci; 2019 Apr; 542():379-386. PubMed ID: 30771633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of leaching conditions on constituents release from Flue Gas Desulfurization Gypsum (FGDG) and FGDG-soil mixture.
    Koralegedara NH; Al-Abed SR; Arambewela MK; Dionysiou DD
    J Hazard Mater; 2017 Feb; 324(Pt A):83-93. PubMed ID: 26810504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations of lead speciation by sulfate from addition of flue gas desulfurization gypsum (FGDG) in two contaminated soils.
    Koralegedara NH; Al-Abed SR; Rodrigo SK; Karna RR; Scheckel KG; Dionysiou DD
    Sci Total Environ; 2017 Jan; 575():1522-1529. PubMed ID: 27743653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient utilisation of flue gas desulfurization gypsum as a potential material for fluoride removal.
    Kang J; Gou X; Hu Y; Sun W; Liu R; Gao Z; Guan Q
    Sci Total Environ; 2019 Feb; 649():344-352. PubMed ID: 30176447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous removal of NO
    Xu XJ; Wu YN; Xiao QY; Xie P; Ren NQ; Yuan YX; Lee DJ; Chen C
    Environ Res; 2022 Apr; 205():112541. PubMed ID: 34915032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomplexation and subsequent reductive removal of EDTA-chelated Cu II by zero-valent iron coupled with a weak magnetic field: Performances and mechanisms.
    Guan X; Jiang X; Qiao J; Zhou G
    J Hazard Mater; 2015 Dec; 300():688-694. PubMed ID: 26296073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenium catalyzed Fe(III)-EDTA reduction by Na2SO3: a reaction-controlled phase transfer catalysis.
    Xiang K; Liu H; Yang B; Zhang C; Yang S; Liu Z; Liu C; Xie X; Chai L; Min X
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):8113-9. PubMed ID: 26888642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in flue gas desulfurization gypsum processes and applications - A review.
    Koralegedara NH; Pinto PX; Dionysiou DD; Al-Abed SR
    J Environ Manage; 2019 Dec; 251():109572. PubMed ID: 31561139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of flue gas desulfurization gypsum and its impact on wheat grain and soil chemistry.
    DeSutter TM; Cihacek LJ; Rahman S
    J Environ Qual; 2014 Jan; 43(1):303-11. PubMed ID: 25602564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metals in Soil and Runoff from a Piedmont Hay Field Amended with Broiler Litter and Flue Gas Desulfurization Gypsum.
    Schomberg HH; Endale DM; Jenkins MB; Chaney RL; Franklin DH
    J Environ Qual; 2018 Mar; 47(2):326-335. PubMed ID: 29634799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced removal of EDTA-chelated Cu(II) by polymeric anion-exchanger supported nanoscale zero-valent iron.
    Liu F; Shan C; Zhang X; Zhang Y; Zhang W; Pan B
    J Hazard Mater; 2017 Jan; 321():290-298. PubMed ID: 27637095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA.
    Miao X; Ma Y; Chen Z; Gong H
    Environ Technol; 2018 Dec; 39(23):3006-3012. PubMed ID: 28828927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of waste FGD gypsum into hydroxyapatite for removal of Pb²⁺ and Cd²⁺ from wastewater.
    Yan Y; Dong X; Sun X; Sun X; Li J; Shen J; Han W; Liu X; Wang L
    J Colloid Interface Sci; 2014 Sep; 429():68-76. PubMed ID: 24935191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient removal of EDTA-complexed Cu(II) by a combined Fe(III)/UV/alkaline precipitation process: Performance and role of Fe(II).
    Shan C; Xu Z; Zhang X; Xu Y; Gao G; Pan B
    Chemosphere; 2018 Feb; 193():1235-1242. PubMed ID: 29153329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Hg, As in FGD gypsum by different aqueous ammonia (amines) during CO
    Wenyi T; Wenhui F; Hongyi L; Zixin Z; Yunkun Z
    Waste Manag Res; 2017 Dec; 35(12):1296-1301. PubMed ID: 29070004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Anaerobic Reduction Process Characteristics and Microbial Community Analysis for Sulfate and Fe(Ⅱ) EDTA-NO/Fe(Ⅲ) EDTA].
    Zhang Y; Wan F; Zhou JT
    Huan Jing Ke Xue; 2017 Nov; 38(11):4706-4714. PubMed ID: 29965416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of microbial reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NOx removal system.
    Li W; Wu CZ; Zhang SH; Shao K; Shi Y
    Environ Sci Technol; 2007 Jan; 41(2):639-44. PubMed ID: 17310734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of flue gas desulfurization gypsum for leaching Cd and Pb in reclaimed tidal flat soil.
    Yang P; Li X; Tong ZJ; Li QS; He BY; Wang LL; Guo SH; Xu ZM
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7840-8. PubMed ID: 26758303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of lead complexes by ferrous phosphate and iron phosphate: Unexpected favorable role of ferrous ions.
    Li R; Li Q; Sun X; Li J; Shen J; Han W; Wang L
    J Hazard Mater; 2020 Jun; 392():122509. PubMed ID: 32182552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Fe(III) driven UV/Air process for enhanced recovery of heavy metals from EDTA complexed system.
    Yuan Y; Zhao W; Liu Z; Ling C; Zhu C; Liu F; Li A
    Water Res; 2020 Mar; 171():115375. PubMed ID: 31865128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.