These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 30771673)

  • 21. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide.
    Linga P; Kumar R; Englezos P
    J Hazard Mater; 2007 Nov; 149(3):625-9. PubMed ID: 17689007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concept design, technical performance, and GHG emissions analysis of petroleum coke direct chemical looping hydrogen highly integrated with gasification for methanol production process.
    Xiang D; Li P; Liu L
    Sci Total Environ; 2022 Sep; 838(Pt 4):156652. PubMed ID: 35697223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The environmental Kuznets curve hypothesis for Bangladesh: the importance of natural gas, liquefied petroleum gas, and hydropower consumption.
    Murshed M; Alam R; Ansarin A
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):17208-17227. PubMed ID: 33394390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel strategy for process optimization of a natural gas liquid recovery unit by replacing Joule-Thomson valve with supersonic separator.
    Shoghl SN; Naderifar A; Farhadi F; Pazuki G
    Sci Rep; 2022 Dec; 12(1):22398. PubMed ID: 36575276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis.
    Cooney G; Littlefield J; Marriott J; Skone TJ
    Environ Sci Technol; 2015 Jun; 49(12):7491-500. PubMed ID: 25992466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of CO
    Cho J; Min B; Jeong MS; Lee YW; Lee KS
    Sci Rep; 2021 Mar; 11(1):2082. PubMed ID: 33654158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental Benefit Assessment for the Carbonation Process of Petroleum Coke Fly Ash in a Rotating Packed Bed.
    Pei SL; Pan SY; Li YM; Chiang PC
    Environ Sci Technol; 2017 Sep; 51(18):10674-10681. PubMed ID: 28837339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation.
    Wiesberg IL; Brigagão GV; de Medeiros JL; de Queiroz Fernandes Araújo O
    J Environ Manage; 2017 Dec; 203(Pt 3):988-998. PubMed ID: 28284810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The integrated approach of carbon capture, utilization, and storage via CO
    Jeong E; Jung SH; Shin HS
    Sci Total Environ; 2024 Oct; 945():174104. PubMed ID: 38908605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide.
    Linga P; Adeyemo A; Englezos P
    Environ Sci Technol; 2008 Jan; 42(1):315-20. PubMed ID: 18350914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated Capture and Conversion of CO
    Kothandaraman J; Saavedra Lopez J; Jiang Y; Walter ED; Burton SD; Dagle RA; Heldebrant DJ
    ChemSusChem; 2021 Nov; 14(21):4812-4819. PubMed ID: 34418303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sourcing of Steam and Electricity for Carbon Capture Retrofits.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2017 Nov; 51(21):12908-12917. PubMed ID: 28968494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2015 Oct; 49(20):12576-84. PubMed ID: 26422409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Techno-Economic Comparison of Integration Options for an Oxygen Transport Membrane Unit into a Coal Oxy-Fired Circulating Fluidized Bed Power Plant.
    Portillo E; Gallego Fernández LM; Cano M; Alonso-Fariñas B; Navarrete B
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flare gas monetization and greener hydrogen production via combination with cryptocurrency mining and carbon dioxide capture.
    Snytnikov P; Potemkin D
    iScience; 2022 Feb; 25(2):103769. PubMed ID: 35146386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-combustion CO
    Akeeb O; Wang L; Xie W; Davis R; Alkasrawi M; Toan S
    J Environ Manage; 2022 Jul; 313():115026. PubMed ID: 35405546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deciding between carbon trading and carbon capture and sequestration: an optimisation-based case study for methanol synthesis from syngas.
    Üçtuğ FG; Ağralı S; Arıkan Y; Avcıoğlu E
    J Environ Manage; 2014 Jan; 132():1-8. PubMed ID: 24246850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Postcombustion Carbon Capture Using Thin-Film Composite Membranes.
    Liu M; Nothling MD; Webley PA; Fu Q; Qiao GG
    Acc Chem Res; 2019 Jul; 52(7):1905-1914. PubMed ID: 31246007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental verification of methane-carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter.
    Lee S; Lee Y; Lee J; Lee H; Seo Y
    Environ Sci Technol; 2013 Nov; 47(22):13184-90. PubMed ID: 24175633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.
    Zhai H; Rubin ES
    Environ Sci Technol; 2016 Apr; 50(7):4127-34. PubMed ID: 26967583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.